scholarly journals Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys

2020 ◽  
pp. 53-69
Author(s):  
T. A. Branch

Austral summer estimates of abundance are obtained for humpback whales (Megaptera novaeangliae) in the Southern Ocean from the IWC’s IDCR and SOWER circumpolar programmes. These surveys have encircled the Antarctic three times: 1978/79–1983/84 (CPI), 1985/86–1990/91 (CPII) and 1991/92–2003/04 (CPIII), criss-crossing strata totalling respectively 64.3%, 79.5% and 99.7% of the open-ocean area south of 60°S. Humpback whales were absent from the Ross Sea, but were sighted in all other regions, and in particularly high densities around the Antarctic Peninsula, in Management Area IV and north of the Ross Sea. Abundance estimates are presented for each CP, for Management Areas, and for assumed summer feeding regions of each Breeding Stock. Abundance estimates are negatively biased because some whales on the trackline are missed and because some humpback whales are outside the survey region. Circumpolar estimates with approximate midpoints of 1980/81, 1987/88 and 1997/98 are 7,100 (CV = 0.36), 10,200 (CV = 0.30) and 41,500 (CV = 0.11). When these are adjusted simply for unsurveyed northern areas, the estimated annual rate of increase is 9.6% (95% CI 5.8–13.4%). All Breeding Stocks are estimated to be increasing but increase rates are significantly greater than zero only for those on the eastern and western coasts of Australia. Given the observed rates of increase, the current total Southern Hemisphere abundance is greater than 55,000, which is similar to the summed northern breeding ground estimates (~60,000 from 1999–2008). Some breeding ground abundance estimates are far greater, and others far lower, than the corresponding IDCR/SOWER estimates, in a pattern apparently related to the latitudinal position of the Antarctic Polar Front.

2016 ◽  
Vol 8 (1) ◽  
pp. 191-198 ◽  
Author(s):  
Natalie M. Freeman ◽  
Nicole S. Lovenduski

Abstract. We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002–2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes (doi:10.1594/PANGAEA.855640). The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.


2016 ◽  
Author(s):  
Natalie M. Freeman ◽  
Nicole S. Lovenduski

Abstract. We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002–2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes (doi:10.1594/PANGAEA.855640). The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.


1999 ◽  
Vol 42 (2) ◽  
Author(s):  
E. Lodolo ◽  
F. Coren ◽  
C. Zanolla

About 40 000 km of marine magnetic and gradiometric data have been collected during eight geophysical surveys conducted since the Austral summer 1987/1988 in the circum-antarctic seas, by the research vessel OGS-Explora. For the most surveyed areas (Ross Sea, Southwestern Pacific Ocean, and Southern Scotia Sea), the analysis of the acquired data have contributed to clarify important aspects of their geological structure and tectonic evolution. The main scientific results, obtained combining other available geophysical data (multichannel seismic profiles and satellite-derived data), will be briefly illustrated.


Author(s):  
Boris Cisewski ◽  
Volker H. Strass ◽  
Martin Losch ◽  
Hartmut Prandke

Sign in / Sign up

Export Citation Format

Share Document