scholarly journals Some reduction theorems for even-dimensional slant submanifolds of a $C_5 \oplus C_{12}$-manifold

2021 ◽  
Vol 67 (2) ◽  
pp. 243-249
Author(s):  
Salvatore de Candia ◽  
Maria Falcitelli
Keyword(s):  
Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5833-5853 ◽  
Author(s):  
Viqar Khan ◽  
Mohammad Shuaib

In the present article, we have investigated pointwise pseudo-slant submanifolds of Kenmotsu manifolds and have sought conditions under which these submanifolds are warped products. To this end first, it is shown that these submanifolds can not be expressed as non-trivial doubly warped product submanifolds. However, as there exist non-trivial (single) warped product submanifolds of a Kenmotsu manifold, we have worked out characterizations in terms of a canonical structure T and the shape operator under which a pointwise pseudo slant submanifold of a Kenmotsu manifold reduces to a warped product submanifold.


2016 ◽  
Vol 3 (1) ◽  
pp. 1204143 ◽  
Author(s):  
Mehraj Ahmad Lone ◽  
Mohamd Saleem Lone ◽  
Mohammad Hasan Shahid ◽  
Lishan Liu

2016 ◽  
Vol 40 ◽  
pp. 657-664 ◽  
Author(s):  
Mohammad Bagher KAZEMI BALGESHIR

2021 ◽  
Vol 45 (5) ◽  
pp. 721-738
Author(s):  
ION MIHAI ◽  
◽  
SIRAJ UDDIN ◽  
АДЕЛА MIHAI

Recently, B.-Y. Chen and O. J. Garay studied pointwise slant submanifolds of almost Hermitian manifolds. By using the notion of pointwise slant submanifolds, we investigate the geometry of pointwise semi-slant submanifolds and their warped products in Sasakian manifolds. We give non-trivial examples of such submanifolds and obtain several fundamental results, including a characterization for warped product pointwise semi-slant submanifolds of Sasakian manifolds.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanlin Li ◽  
Ali H. Alkhaldi ◽  
Akram Ali

In this study, we develop a general inequality for warped product semi-slant submanifolds of type M n = N T n 1 × f N ϑ n 2 in a nearly Kaehler manifold and generalized complex space forms using the Gauss equation instead of the Codazzi equation. There are several applications that can be developed from this. It is also described how to classify warped product semi-slant submanifolds that satisfy the equality cases of inequalities (determined using boundary conditions). Several results for connected, compact warped product semi-slant submanifolds of nearly Kaehler manifolds are obtained, and they are derived in the context of the Hamiltonian, Dirichlet energy function, gradient Ricci curvature, and nonzero eigenvalue of the Laplacian of the warping functions.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1151 ◽  
Author(s):  
Mohd. Aquib ◽  
Michel Nguiffo Boyom ◽  
Mohammad Hasan Shahid ◽  
Gabriel-Eduard Vîlcu

In this work, we first derive a generalized Wintgen type inequality for a Lagrangian submanifold in a generalized complex space form. Further, we extend this inequality to the case of bi-slant submanifolds in generalized complex and generalized Sasakian space forms and derive some applications in various slant cases. Finally, we obtain obstructions to the existence of non-flat generalized complex space forms and non-flat generalized Sasakian space forms in terms of dimension of the vector space of solutions to the first fundamental equation on such spaces.


2005 ◽  
pp. 47-66 ◽  
Author(s):  
Alfonso Carriazo ◽  
Luis Fernández ◽  
María Belén Hans-Uber
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document