scholarly journals A STUDY OF POWER LINE INTERFERENCE CANCELLATION USING IIR, AAPTIVE AND WAVELET FILTERING IN ECG

Author(s):  
IMTEYAZ AHMAD ◽  
F. ANSARI ◽  
U.K. DEY

Background: It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. The present paper deals with the digital filtering method to reduce 50 Hz power line noise artifacts in the ECG signal. 4th order Butterworth notch filters(BW=.5 Hz) is used to reduce 50 Hz power line noise interference(PLI) from ECG signals and its performance is compared with Adaptve filters. Method: ECG signal is taken from physionet database. ECG signal (with PLI noise of different frequencies) were processed by Butterworth notch filters of bandwidths of 0.5 Hz. Ringing Artifact is observed in the output. ECG signal (with PLI noise of different frequencies) were processed by Adaptive filters no ringing effect seen. Wavelet filtering applied clean ECG were observed. Result: Performance is compared based on SNR and MSE of Butterworth notch filter and adaptive filters and output of wallet filtering were observed. Conclusion: RLS adaptive filter give better performance as compared to IIR Butterworth and LMS. Clean ECG were seen when filtering using symlet8 wavelet was done.

Author(s):  
Ahmed Kareem Abdullah ◽  
Ahmed Ghanim Wadday ◽  
Ali A. Abdullah

The cardiac signal is very important for the heart disease diagnosis and evaluation. The noise cancelation represent one of the most preprocessing step in ECG signal processing, usually, this signal is very sensitive and varies with time. The ECG signal is mostly contaminated by different signals like Power line noise signal, Baseline signal and muscle signal. The power line interference signal is the most effected signal on the ECG during data recording. Several papers try to cancel the noise based on different ways and to extract the useful information. In this paper a novel approach based on stone blind source extraction is used to extract the pure ECG signal from raw ECG, the main advantage of the proposed approach compared with the classical technique is to separate all the useful information without filtering or cancelling the suitable data from the recording signal. Real ECG data from MIT-BIH databases is taken and the MATLAB program is used to evaluate the experimental results. The performance of the proposed approach is measured based on SNR and MSE. The main contribution of this paper is to use Stone blind source separation technique as a first time in ECG signal analysis and prove that this method is the best technique compared with conventional ways. The obtained result proves Stone BSS technique is very efficient to remove the power line noise.


2018 ◽  
Vol 12 (9) ◽  
pp. 119
Author(s):  
Mohammad Istiaque Reja ◽  
Md. Golam Murtuza ◽  
Roki Roy

Electrocardiogram (ECG) is a vital tool used for diagnosing various heart diseases. It is the graphical representation of the electrical activity of the heart. But the electrocardiographic signals are often corrupted by noise from diverse sources. The most significant noises that corrupt ECG signal are power line interference and baseline wanders. It is necessary to reduce the amount of these disturbances from ECG signal for proper identification and interpretation of heart condition. This paper investigates the performance of the different 'Band stop filter-High Pass filter' combinations of window based FIR filter for removing the baseline wander and power line noise present in electrocardiogram. The ECG signal is generated and then noises are added to the ECG signal using MATLAB® where filters are designed and analyzed using Filter Design and Analysis Tool (FDATool). 49 different 'Band stop filter-High Pass filter' combinations are made using seven different FIR windows namely Bartlett, Chebyshev, Hamming, Hann, Kaiser, Rectangular, Triangular. For filter order of 350 and 450, the performance of different window combinations are compared and analyzed in terms of Signal power, Peak-to-peak value, Signal to Noise Ratio (SNR) and Mean Square Error (MSE) of the filtered output. A further analysis of the waveforms of the filtered output show that the combinations where both the bandstop and highpass filters are either Kaiser or Rectangular window i.e. Kaiser-Kaiser, Kaiser-Rectangular, Rectangular-Kaiser and Rectangular-Rectangular windows give the best performance in reducing both the baseline noise and high frequency power line noise. It is also found that the reduction of baseline noise is better if 450 filter order is used instead of 350 order in the above mentioned best four combinations, although the amount of delay for 450 order is slightly higher.


2014 ◽  
Vol 543-547 ◽  
pp. 2687-2691 ◽  
Author(s):  
Ahmed Kareem Abdullah ◽  
Chao Zhu Zhang ◽  
Si Yao Lian

An enhanced blind source separation algorithm based on Stone's BSS approach is proposed, to reject the Electrooculogram (EOG) artifact and power line noise (50Hz) from simulated and real human Electroencephalography (EEG) signals without the notch filter, in order not to lose any useful EEG data around the 50-Hz. The proposed algorithm which called efficient Stones BSS (ESBSS) has been compared with four well-known BSS algorithms over super-Gaussian, sub-Gaussian artifacts and EEG signals with a linear mixture. In Original Stones BSS, the half-life values taken as a constant, typically (hlong≥100 hShort), but in the proposed work, an optimization procedure is used to change these values until the maximum temporal predictability is found. The real EEG data are taken from Imperial College London using a computerized EEG device with eight electrodes placed according to the 10-20 system.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2568
Author(s):  
Tadeas Bednar ◽  
Branko Babusiak ◽  
Michal Labuda ◽  
Milan Smetana ◽  
Stefan Borik

A capacitive measurement of the biosignals is a very comfortable and unobtrusive way suitable for long-term and wearable monitoring of health conditions. This type of sensing is very susceptible to noise from the surroundings. One of the main noise sources is power-line noise, which acts as a common-mode voltage at the input terminals of the acquisition unit. The origin and methods of noise reduction are described on electric models. Two methods of noise removal are modeled and experimentally verified in the paper. The first method uses a passive capacitive grounding electrode, and the second uses an active capacitive Driven Right Leg (DRL) electrode. The effect of grounding electrode size on noise suppression is experimentally investigated. The increasing electrode area reduces power-line noise: the power of power-line frequency within the measured signal is 70.96 dB, 59.13 dB, and 43.44 dB for a grounding electrode area of 1650 cm2, 3300 cm2, and 4950 cm2, respectively. The capacitive DRL electrode shows better efficiency in common-mode noise rejection than the grounding electrode. When using an electrode area of 1650 cm2, the DRL achieved 46.3 dB better attenuation than the grounding electrode at power-line frequency. In contrast to the grounding electrode, the DRL electrode reduces a capacitive measurement system’s financial costs due to the smaller electrode area made of the costly conductive textile.


Sign in / Sign up

Export Citation Format

Share Document