notch filter
Recently Published Documents


TOTAL DOCUMENTS

1535
(FIVE YEARS 272)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Marcela Machado ◽  
Maciej Dutkiewicz

Abstract The vibration characterization is directly associated with the system’s physical properties, such as mass, damping, and stiffness. For over a century, vibration resonator or dynamic absorber has been used for vibration control and mitigation in many sectors of engineering. A limitation of this device is that it acts as a notch filter, which is only effective over a narrow band of frequencies. Therefore, researchers have designed the call metamaterial, which in this case, targets the improvement of vibration attenuation and induces locally resonant bandgaps. This work investigates the broadband vibration mitigation of a beam under tensile load with periodically attached dynamic absorbers. The study uses the modal analysis approach, a simple formulation that only depends on the resonator target frequency and total mass ratio to investigate single and multiple-frequency bandgap formation. Metamaterial and rainbow metamaterial beam under tensile load are employed to widen the gap. In practical designs, a finite number of resonators is required for the open bandgap, and this ideal number is explored in the paper. Additionally, a tensiled beam (cable) virtual twin is built from a physical system to forecast its broadband vibration mitigation with the metamaterial approach. Numerical investigations are conducted regarding the effects of mass ratio and the ideal mass ratio on the open and on the gap convergence, as well as resonators in single and multiple arrangements inducing multiple gaps.


Author(s):  
Sanjay Kumar Roy ◽  
Kamal Kumar Sharma ◽  
Brahmadeo Prasad Singh

A novel article presents the RC-notch filter function using the floating admittance matrix approach. The main advantages of the approach underlined the easy implementation and effective computation. The proposed floating admittance matrix (FAM) method is unique, and the same can be used for all types of electronic circuits. This method takes advantage of the partitioning technique for a large network. The sum property of all the elements of any row or any column equal to zero provides the assurance to proceed further for analysis or re-observe the very first equation at the first instant itself. This saves time and energy. The FAM method presented here is so simple that anybody with slight knowledge of electronics but understating the matrix maneuvering can analyze any circuit to derive all types of transfer functions. The mathematical modelling using the FAM method allows the designer to adjust their design at any stage of analysis comfortably. These statements provide compelling reasons for the adoption of the proposed process and demonstrate its benefits.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Anwar A. Esmaeel ◽  
Sa’ed Abed ◽  
Bassam J. Mohd ◽  
Abbas A. Fairouz

The increased demand for better accuracy and precision and wider data size has strained current the floating point system and motivated the development of the POSIT system. The POSIT system supports flexible formats and tapered precision and provides equivalent accuracy with fewer bits. This paper examines the POSIT and floating point systems, comparing the performance of 32-bit POSIT and 32-bit floating point systems using IIR notch filter implementation. Given that the bulk of the calculations in the filter are multiplication operations, an Enhanced Radix-4 Modified Booth Multiplier (ERMBM) is implemented to increase the calculation speed and efficiency. ERMBM enhances area, speed, power, and energy compared to the POSIT regular multiplier by 26.80%, 51.97%, 0.54%, and 52.22%, respectively, without affecting the accuracy. Moreover, the Taylor series technique is adopted to implement the division operation along with cosine arithmetic unit for POSIT numbers. After comparing POSIT with floating point, the accuracy of POSIT is 92.31%, which is better than floating point’s accuracy of 23.08%. Moreover, POSIT reduces area by 21.77% while increasing the delay. However, when the ERMBM is utilized instead of the POSIT regular multiplier in implementing the filter, POSIT outperforms floating point in all the performance metrics including area, speed, power, and energy by 35.68%, 20.66%, 31.49%, and 45.64%, respectively.


Author(s):  
A. Rajani

Abstract: The electrical activity of the heart is test with an electrocardiogram (ECG). The fundamental information for the taking decision about various types of heart diseases identified by electrocardiogram. There have been numerous attempts over decades to extract the characteristics of the heartbeat through ECG records with high accuracy and efficiency using a variety of strategies and techniques. In this paper a novel scheme is acquainted, the problem is solved by isolated time space using q-lag unbiased finite impulse response (UFIR), then the received time changing of optimal average horizon for the shape of the ECG signal. A complete statistical analysis is furnished by normalized histogram and statistical classifiers, P wave features extraction based on the detected fiducial points is deliberated. In this concept by utilizing QRS detection, morphological top-bottom hat transformation and notch filters is ameliorated PSNR and latency constraints, furnishes high accuracy and reduced elapsed time. Keywords: Electrocardiogram (ECG) denoising, unbiased finite impulse response (UFIR) filtering, P wave feature extraction, normalized histogram, QRS complex detection.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Chuen-Lin Tien ◽  
Hong-Yi Lin ◽  
Kuan-Sheng Cheng ◽  
Chun-Yu Chiang ◽  
Ching-Ying Cheng

This study presents a multilayer design and fabrication of an optical notch filter for enhancing visual quality. A cost-effective multilayer design of notch filter with low surface roughness and low residual stress is proposed. A 9-layer notch filter composed of SiO2 and Nb2O5 with a central wavelength of 480 nm is prepared by electron beam evaporation combined with ion-assisted deposition. The optical transmittance, residual stress, and surface morphology are measured by a UV/VIS/NIR spectrophotometer, Twyman-Green interferometer and field emission scanning electron microscopy (FE-SEM). The transmittance of the notch filter at the central wavelength is above 15%, and the average transmittance of the transmission band is about 80%. The residual stress of the notch filter is −0.235 GPa, and the root mean square surface roughness is 1.85 nm. For improving the visual quality, a good image contrast can be obtained by observing the microscopic image using the proposed notch filter.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenli Li ◽  
Yongkang Liu ◽  
Shuaishuai Ge ◽  
Daming Liao

Transmission mechanisms of the servo drive system are not a pure rigid body, and the existence of the elastic transmission mechanisms will make the system generate mechanical resonance. Aiming at mechanical resonance of the servo drive system, the resonance generation mechanism is analyzed, the four-mass model considering the time-varying meshing stiffness of the gear is established, and the influence of different stiffness parameters on the mechanical resonance of the system is researched in this paper. The composite controller of Model Predictive Control (MPC) with Notch Filter is used to simulate the mechanical resonance suppression of the four-mass servo system considering time-varying meshing stiffness, and it is compared with the mechanical resonance suppression method based on Model Predictive Control. The simulation results show that when the step speed is 200 r/min, the overshoot is reduced from 11.6 r/min to 1.1 r/min, which is reduced by 90.5%. Under the impact load condition, from 10 Nm to 30 Nm, overshoot is reduced from 34.3 r/min to 12.8 r/min, reduced by 62%, and torque oscillation is reduced by 81.5%. Therefore, the composite controller of Model Predictive Control with Notch Filter can suppress the mechanical resonance problem effectively, caused by elastic transmission, and improve the robustness of servo drive system.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1513
Author(s):  
Chuen-Lin Tien ◽  
Hong-Yi Lin ◽  
Kuan-Sheng Cheng ◽  
Chih-Kai Chang

We present a new laser protective lens based on a multilayered notch filter design with low residual stress and low surface roughness. An18-layer notch filter was prepared by electron beam evaporation with an ion-assisted deposition technique, which was composed of SiO2 and Nb2O5 with a center wavelength of 532 nm. The optical transmittance, residual stress, surface roughness, and surface morphology were measured by a UV/VIS/NIR spectrophotometer, Twyman–Green interferometer, scanning probe microscope, Linnik microscopic interferometer, and field-emission scanning electron microscopy (FE-SEM). The transmittance of the notch filters at center wavelength is 0.2%, and the average transmittance of the transmission band is about 70%. The residual stress of the notch filter is −0.298 GPa, and the root mean square surface roughness is 1.88 nm. The experimental results show that the optical transmittance meets the design requirements.


2021 ◽  
Author(s):  
Ali Mobaien ◽  
Arman Kheirati Roonizi ◽  
Reza Boostani

<div>Abstract—In this work, we present a powerful notch filter for power-line interference (PLI) cancelation from biomedical signals. This filter has a unit gain and a zero-phase response. Moreover, the filter can be implemented adaptively to adjust its bandwidth based on the signal-to-noise ratio. To realize this filter, a dynamic model is defined for PLI based on its sinusoid property. Then, a constrained least square error estimation is used to emerge the PLI based on the observations while the constraint is the PLI dynamic. At last, the estimated PLI is subtracted from recordings. The proposed filter is assessed using synthetic data and real biomedical recordings in different noise levels. The results demonstrate this filter as a very powerful and effective means for canceling the PLI out.</div>


Sign in / Sign up

Export Citation Format

Share Document