Soil and Water Conservation Measures and Effects of Water Conservancy Projects

2021 ◽  
2013 ◽  
Vol 726-731 ◽  
pp. 3843-3846
Author(s):  
Shu Li Wang ◽  
Jian Ping Zhou ◽  
Zhen Yang

Four kinds of protective measures and three contrast measures were chosen on Harbin-Suifenhe highway to analyze the effects of different types of soil and water conservation measure on highway side slope soil. The results showed that Soil and water conservation measures of highway side slope increased water holding capacity and soil conservation capacity significantly. The saturated water holding capacity, capillary water holding capacity and field water holding capacity of E, PP grid measure were 1.79 times,1.60 times and 1.62 times respectively of that in contrast 1 measure. E, PP grid measure, resin network measure and spread planting measures reduced runoff 58.5%, 59.3% and 50.8% compared with contrast measures. Consider of landscape and cost factors, spread planting measures was recommended to use on the smaller slope degree of highway side, E, PP grid measure, resin network measure were recommended to be used on the steep slope of highway side, hex hollow brick measure was not recommended.


Author(s):  
Shuyu Zhang ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian

Investigating the changes in streamflow regimes is useful for understanding the mechanisms associated with hydrological processes in different watersheds and for providing information to facilitate water resources management. In this study, we selected three watersheds, i.e., Sandu River, Hulu River, and Dali River on the Loess Plateau, to examine the changes in the streamflow regimes and to determine their responses to different soil and water conservation measures (terracing, afforestation, and damming). The daily runoff was collected continuously by three hydrological gauges close to the outlets of the three watersheds from 1965 to 2016. The eco-surplus, eco-deficit, and degree of hydrological change were assessed to detect hydrological alterations. The Budyko water balance equation was applied to estimate the potential impacts of climate change and human activities on the hydrological regime changes. Significant decreasing trends (P < 0.05) were detected in the annual streamflow in the Sandu and Dali River watersheds, but not in the Hulu River watershed where afforestation dominated. The annual eco-surplus levels were low and they decreased slightly at three stations, whereas the eco-deficit exhibited dramatic increasing trends in the Sandu and Dali River watersheds. In the Sandu River watershed (dominated by terraces), the runoff exhibited the most significant reduction and the eco-deficit was the highest among the three watersheds. The integral degrees of hydrological change were higher in the Sandu River watershed than the other two watersheds, thereby suggesting substantial variations in the magnitude, duration, frequency, timing, and rate of change in the daily streamflow. In the Dali River watershed (dominated by damming), the changes in the extreme flow were characterized by a decreasing number appearing in high flow. In these watersheds, human activities accounted for 74.1% and 91.78% of the runoff reductions, respectively. In the Hulu River watershed (dominated by afforestation), the annual runoff exhibited an insignificant decreasing trend but with a significant increase in the low flow duration. Rainfall changes accounted for 64.30% of the runoff reduction.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2020 ◽  
Vol 12 (8) ◽  
pp. 3417 ◽  
Author(s):  
Xiaoan Chen ◽  
Ziwei Liang ◽  
Zhanyu Zhang ◽  
Long Zhang

This paper analyzes the relationship between runoff, soil erosion, sediment particles, and natural rainfall characteristics on sloping farmland in the red soil region of southern China. The surface runoff and soil loss data were measured on runoff plots during 66 natural rainfall events from 2015 to 2018 in Jiangxi Province. The results show that the maximum 30-min rainfall intensity (I30) is positively related to the runoff depth, soil erosion modulus, and sediment mean weight diameter (MWD). With the increase in I30 during rainfall, the coarse sand content increases, and the fine sand content decreases. The average annual runoff of slope tillage, hedgerows with slope tillage, straw mulching with conventional tillage, and contour tillage decreased by 32.56%, 65.87%, 83.99%, and 87.30%, respectively, compared with that of bare land. Soil and water conservation measures can significantly reduce slope runoff. The flow-reduction effect of contour tillage and straw mulching with conventional tillage increases as I30 increases, and the flow-reduction effect of hedgerows with slope tillage first increases and then decreases as I30 increases. The coefficients of variation and standard deviations of the flow-reduction effects of different soil and water conservation measures decrease with increasing I30. The average annual soil erosion moduli of slope tillage, hedgerows with slope tillage, contour tillage, and straw mulching with conventional tillage decreased by 59.33%, 91.29%, 97.17%, and 98.45%, respectively, compared with that of bare land. Soil and water conservation measures can significantly reduce the sediment yield on slopes. The flow-reduction effects of hedgerows with slope tillage, contour tillage, and straw mulching with conventional tillage all increase with I30, and their coefficients of variation and standard deviations decrease with I30. The average single rainfall erosion sediment MWD of decreased by 5.91%, 8.33%, 9.69%, and 13.32%, respectively, compared with that of bare land. Straw mulching with conventional tillage can significantly reduce the MWD of erosion sediment, effectively reduce the content of coarse sand, and increase the content of fine sand. Straw mulching with conventional tillage is a very good soil and water conservation measure for sloping farmland. It not only has the best effect on reducing flow and sediment, but also can effectively intercept coarse sand and reduce the MWD of erosion sediment.


Sign in / Sign up

Export Citation Format

Share Document