water holding capacity
Recently Published Documents


TOTAL DOCUMENTS

1038
(FIVE YEARS 312)

H-INDEX

56
(FIVE YEARS 8)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Ying Zhang ◽  
Beibei Zhang ◽  
Qing Xu ◽  
Deqiang Gao ◽  
Wenbin Xu ◽  
...  

The climate-induced changes in soil water patterns pose a serious threat to subtropical plantations. Mixed species stands have been advocated as an efficient way to enhance ecosystem stability. However, little is known about their possible impact on the soil water-holding capacity in the subtropics. In this study, we employed a stable hydrogen isotope to assess the contribution of rainfall to soil water (CRSW) in a pure Chinese fir (Cunninghamia lanceolata) plantation and in two mixtures of Chinese fir with Cinnamomum camphora or with Alnus cremastogyne after three different magnitudes of rainfall events in subtropical China. Furthermore, we used structure equation modeling (SEM) to quantify the relative importance of vegetation and soil properties on the CRSW. The results indicated that the CRSW did not differ among these three Chinese fir plantations after light rainfall, whereas the CRSW of moderate and heavy rainfall to soil water were 15.95% and 26.06% higher in Chinese fir plantation with Cinnamomum camphora, and 22.67% and 22.93% higher in Chinese fir plantation with Alnus cremastogyne than that in the pure Chinese fir plantation, respectively. SEM analysis showed that the vegetation biomass and soil properties significantly affected the CRSW following light rainfall, but the soil properties were the most important factors influencing the CRSW under moderate and heavy rainfall. Our findings demonstrate that the mixed conifer–broad-leaved plantation is a more effective strategy for improving the soil water-holding capacity than the pure conifer plantation in subtropical regions, which is conducive to coping with the frequent seasonal droughts and extreme precipitation events.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 226
Author(s):  
Hao Cheng ◽  
Chuhan Bian ◽  
Yuanming Chu ◽  
Jun Mei ◽  
Jing Xie

This research evaluated the effects of dual-frequency ultrasound-assisted thawing (UAT) on the thawing time, physicochemical quality, water-holding capacity (WHC), microstructure, and moisture migration and distribution of large yellow croaker. Water thawing (WT), refrigerated thawing (RT), and UAT (single-frequency: 28 kHz (SUAT-28), single-frequency: 40 kHz (SUAT-40), dual-frequency: 28 kHz and 40 kHz (DUAT-28/40)) were used in the current research. Among them, the DUAT-28/40 treatment had the shortest thawing time, and ultrasound significantly improved the thawing rate. It also retained a better performance from the samples, such as color, texture, water-holding capacity and water distribution, and inhibited disruption of the microstructure. In addition, a quality property analysis showed that the pH, total volatile basic nitrogen (TVB-N), and K value were the most desirable under the DUAT-28/40 treatment, as well as this being best for the flavor of the samples. Therefore, DUAT-28/40 treatment could be a possible thawing method because it improves the thawing rate and maintains the quality properties of large yellow croaker.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Iben Lykke Petersen ◽  
Patrizia Buldo

The production of a fermented plant-based cheese requires understanding the behavior of the selected raw material prior to fermentation. Raw material processing affects physicochemical properties of plant protein ingredients, and it determines their ability to form fermentation-induced protein gels. Moreover, the addition of oil also influences structure formation and therefore affects gel firmness. This study focuses on identifying and characterizing an optimal pea protein matrix suitable for fermentation-induced plant-based cheese. Stability and gel formation were investigated in pea protein matrices. Pea protein isolate (PPI) emulsions with 10% protein and 0, 5, 10, 15, and 20% olive oil levels were produced and further fermented with a starter culture suitable for plant matrices. Emulsion stability was evaluated through particle size, ζ-potential, and back-scattered light changes over 7 h. Gel hardness and oscillation measurements of the fermented gels were taken after 1 and 7 days of storage under refrigeration. The water-holding capacity of the gels was measured after 7 days of storage and their microstructure was visualized with confocal microscopy. Results indicate that all PPI emulsions were physically stable after 7 h. Indeed, ζ-potential did not change significantly over time in PPI emulsions, a bimodal particle size distribution was observed in all samples, and no significant variation was observed after 7 h in any of the samples. Fermentation time oscillated between 5.5 and 7 h in all samples. Higher oil content led to weaker gels and lower elastic modulus and no significant changes in gel hardness were observed over 7 days of storage under refrigeration in closed containers. Water-holding capacity increased in samples with higher olive oil content. Based on our results, an optimal pea protein matrix for fermentation-induced pea protein gels can be produced with 10% protein content and 10% olive oil levels without compromising gel hardness.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Behzad Masoumi ◽  
Azam Abbasi ◽  
Seyed Mohammad Mazloomi ◽  
Samaneh Shaghaghian

Microbial flora of probiotic yogurt can have nutraceutical properties and improve beneficial health effects of food products. In this study, microbial and physicochemical properties of raw chicken fillets dipped in regular yogurt and probiotic yogurt containing Lactobacillus casei, preserved at 4°C for 9 days, were studied. In this regard, microbial analysis (Staphylococcus aureus, fecal coliform, yeasts, and molds) and physicochemical analysis (pH, water holding capacity, cooking loss percentage, Thiobarbituric acid reactive substances, and texture profile analysis) were performed during the storage time. In comparison with control samples, the amount of Staphylococcus aureus, fecal coliforms, yeast and mold counts, pH index, malondialdehyde value, and cooking loss percentage reduced significantly ( P < 0.05 ) in the chicken fillets treated with regular and probiotic yogurt, while the water holding capacity increased in six days. It was concluded that probiotic and regular yogurts reduced microbial growth and improved the physicochemical quality of chicken fillets during storage and cooking time.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 144
Author(s):  
Minh Ha ◽  
Robyn Dorothy Warner ◽  
Caitlin King ◽  
Sida Wu ◽  
Eric N. Ponnampalam

This study investigated the CIELab colour, water holding capacity, texture and oxidative stability of sheep meat from different breeds, finishing feeds, and retail packaging methods. Leg primal cuts from a subset of Composite wether lambs (n = 21) and Merino wether yearlings (n = 21) finished on a standard diet containing grain and cereal hay, a standard diet with camelina forage, or a standard diet with camelina meal, were used in this study. Semimembranosus and Vastus lateralis were packaged in vacuum skin packaging (VSP), or modified atmosphere packaging with 80% O2 and 20% CO2 (HioxMAP), or with 50% O2, 30% N2, and 20% CO2 (TrigasMAP). Packaging had a greater effect (p < 0.001) on L*, a*, b*, hue, and chroma than the effects from breed and finishing feed. Purge loss was affected by packaging. Cooking loss was affected by breed for Semimembranosus and packaging for both muscle types. HioxMAP and TrigasMAP increased WBSF and Texture Profile Analysis hardness of the meat compared to VSP. Lipid oxidation, assessed by TBARS, were lower in camelina forage or camelina meal supplemented diets and TrigasMAP compared to standard diet and HioxMAP, respectively. Total carbonyl and free thiol content were lower in VSP. Thus, supplementing feed with camelina forage or meal and lowering oxygen content in retail packaging by TrigasMAP or VSP are recommended to ensure optimal sheep meat quality.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
K. M. Lindroth ◽  
J. Dicksved ◽  
I. Vervuert ◽  
C. E. Müller

Abstract Background Free faecal liquid (FFL) is a condition in horses characterised by two-phase (one solid and one liquid) separation of faeces. Causes of the condition are unknown, but disturbed hindgut fermentation has been suggested as it may alter biochemical composition and appearance of faeces in equines. However, information on faecal composition in horses with FFL is scarce. Faecal chemical composition (dry matter, osmolality, ash, macro minerals, short-chain fatty acids (SCFA) and pH) and physical characteristics (free liquid, sand, water holding capacity and particle size distribution) were compared in horses with (case) and without (control) FFL in two sub-studies. In sub-study I, faeces from 50 case-control horse pairs in Sweden and Norway were sampled in three sampling periods (SP1-SP3). In sub-study II, faeces from 32 case-control horse pairs in Germany were sampled on one occasion. Results In sub-study I, faecal concentration and proportion of lactic acid (of total short-chain fatty acids, SCFA) and water holding capacity was lower in case compared to control horses. Other variables (content of dry matter, ash, sodium, calcium, phosphorous, magnesium, sulphur, and concentrations of i-butyric, n-valeric and total SCFA, ammonia-N as proportion of total N, and pH) were similar in faeces from case and control horses. In sub-study II, all analysed variables were similar in faecal samples from case and control horses. Faecal particle size distribution was similar in case and control horses, but the proportion of larger particles (2 and 1 mm) were lower and proportion of smaller particles (< 1 mm) was higher in sub-study I compared to in sub-study II. Conclusions To the authors’ knowledge, this is the first study to investigate faecal chemical composition and physical characteristics in horses with FFL. Case and control horses had similar total SCFA, pH and osmolality, indicating that hindgut fermentation was similar. However, small differences in concentration and proportion (of total SCFA) of lactic acid and water holding capacity of faeces were shown and are of interest for further studies of horses with FFL.


Author(s):  
S. S. Kolomiiets ◽  
A. S. Bilobrova ◽  
V. M. Vyr’ovka ◽  
T. V. Tarasenko

The results of actual research on profile variability of soil water-physical properties of undisturbed structure at the plots, where traditional plowing and no-till technology have been applied for 11 years, are given. The comparative research was conducted based on a stationary field experiment, which is carried out at Panfily Research Station of the National Scientific Center "Institute of Agriculture NAAS" when applying a system of laboratory diagnostics of water-physical properties created in the Institute of Water Problems and Land Reclamation of NAAS based on hydrophysical methods. The characteristics of main hydrophysical functions, namely moisture conductivity and water holding capacity, as well as hydrological constants -  maximum hygroscopic moisture, withering point, minimal water holding capacity, maximum water holding capacity,  specific surface area and active moisture range were obtained for three different depths. Based on the results of comparison, it was found that mesoporosity was more developed in the soil on the plots under plowing, while macroporosity was more developed on the no-till plots. The fundamental result is determining the inversion type of profile distribution of moisture conductivity in unsaturated soil. Thus, under on the no-till plots the highest values of moisture conductivity were observed in the deepest soil layer (0,70-0,85 m), decreasing to the soil surface, while on the plots under plowing the highest values of moisture conductivity were observed in cultivated soil layer (0,00-0,15 m), which naturally decreased in depth. The profile distribution of moisture conductivity on the no-till plots contributed to the infiltration supply of groundwater and capillary feeding of soil root layers from the deeper ones.


2021 ◽  
Author(s):  
Yves Tramblay ◽  
Pere Quintana Seguí

Abstract. Soil moisture is a key variable for drought monitoring but soil moisture measurements networks are very scarce. Land-surface models can provide a valuable alternative to simulate soil moisture dynamics, but only a few countries have such modelling schemes implemented for monitoring soil moisture at high spatial resolution. In this study, a soil moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as a reference the soil moisture simulated by a high-resolution land surface model. To estimate soil water holding capacity, the parameter required to run the SMA model, two approaches were compared: the direct estimation from European soil maps using pedotransfer functions, or an indirect estimation by a Machine Learning approach, Random Forests, using as predictors altitude, temperature, precipitation, evapotranspiration and land use. Results showed that the Random Forest model estimates are more robust, especially for estimating low soil moisture levels. Consequently, the proposed approach can provide an efficient way to simulate daily soil moisture and therefore monitor soil moisture droughts, in contexts where high-resolution soil maps are not available, as it relies on a set of covariates that can be reliably estimated from global databases.


Author(s):  
Nguyen Dang My Duyen ◽  
Nguyen Quang Duy ◽  
Ly Ngoc Bin

Solvent exchange is considered an effective method that changes the physicochemical properties of starch, especially the absorption. Ethanol concentration is one of the important influencing factors to form porous pores from the surface to inside starch granules. In this study, the effect of ethanol concentration on technical properties of starch treated by solvents were investigated. The ratio of ethanol/water was prepared at 1/9, 3/7, 5/5, 7/3 and 10/0 (w/w), respectively. Corn starch was treated by solvent at 8% concentration. Morphology, oil and water holding capacity, solubility, swelling power, viscosity, and transmittance were studied to elucidate the effect of the ethanol concentration on the morphological and technical properties of corn starch treated by solvent. As a result, starch treated by solvent with different concentrations tended to form wrinkles and pore from the surface to the inside of the starch granules during ethanol immersion. Therefore, the oil and water holding capacity, solubility, swelling and viscosity of the solvent-treated starch samples increase as the concentration of ethanol increases. Otherwise, the transmittance of starch glues tends to decrease when the ethanol concentration increases.


Sign in / Sign up

Export Citation Format

Share Document