scholarly journals A day-ahead hybrid optimization algorithm for finding the dispatch schedule of VPP in a distribution system

2020 ◽  
Author(s):  
Seyed Iman Taheri ◽  
Lucas Lima Rodrigues ◽  
Mauricio B. C. Salles ◽  
Alfeu Joãozinho Sguarezi Filho

Distributed renewable generations such as photovoltaic units are electricity generators for installing close to the loads on the distribution system. In this paper, the dispatch function of a non-centralized Virtual Power Plant (VPP) with having a photovoltaic unit in each bus is considered to optimize. This dispatch function is assigned based on the predicted load shape of the next day. A new day-ahead hybrid optimization algorithm is presented to optimize the dispatch function. The proposed algorithm implements a new hybrid combination of Particle Swarm Optimization (PSO) and Genetic Optimization (GA) algorithms simultaneously to benefit both algorithms’ advantages. The objective function is the optimization of the voltage deviation of the VPP. The suggested algorithm is executed on a 13-bus-radial IEEE standard VPP system using MATLAB software coupled with open-source software called Open-DSS. The results show the importance of the proposed algorithm to optimize the voltage deviation of the VPP. The superiority of the proposed algorithm is related to the accuracy and calculation velocity in comparison with the other tested evolutionary algorithms. The Distribution System Operator could map and move towards its full benefits of the increasing integration of DGs with a strategic placement that could keen prosumers on integrating these actions.

Energy ◽  
2017 ◽  
Vol 133 ◽  
pp. 70-78 ◽  
Author(s):  
Abhishek Awasthi ◽  
Karthikeyan Venkitusamy ◽  
Sanjeevikumar Padmanaban ◽  
Rajasekar Selvamuthukumaran ◽  
Frede Blaabjerg ◽  
...  

2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


Sign in / Sign up

Export Citation Format

Share Document