consequent pole
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 163)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
pp. 259-269
Author(s):  
Lin Zhang ◽  
Xueyuan Liu ◽  
Xuetong Ouyang ◽  
Wei Chen

Author(s):  
Basharat Ullah ◽  
Faisal Khan ◽  
Bakhtiar Khan ◽  
Muhammad Yousuf

Purpose The purpose of this paper is to analyze electromagnetic performance and develop an analytical approach to find the suitable coil combination and no-load flux linkage of the proposed hybrid excited consequent pole flux switching machine (HECPFSM) while minimizing the drive storage and computational time which is the main problem in finite element analysis (FEA) tools. Design/methodology/approach First, a new HECPFSM based on conventional consequent pole flux switching permanent machine (FSPM) is proposed, and lumped parameter magnetic network model (LPMNM) is developed for the initial analysis like coil combination and no-load flux linkage. In LPMNM, all the parts of one-third machine are modeled which helps in reduction of drive storage, computational complexity and computational time without affecting the accuracy. Second, self and mutual inductance are calculated in the stator, and dq-axis inductance is calculated using park transformation in the rotor of the proposed machine. Furthermore, on-load performance analysis, like average torque, torque density and efficiency, is done by FEA. Findings The developed LPMNM is validated by FEA via JMAG v. 19.1. The results obtained show good agreement with an accuracy of 96.89%. Practical implications The proposed HECPFSM is developed for high-speed brushless AC applications like electric vehicle (EV)/hybrid electric vehicle (HEV). Originality/value The proposed HECPFSM offers better flux regulation capability with enhanced electromagnetic performance as compared to conventional consequent pole FSPM. Moreover, the developed LPMNM reduces drive storage and computational time by modeling one-third of the machine.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2374
Author(s):  
Jing Li ◽  
Xuzhen Huang ◽  
Bo Zhou ◽  
Yansong Liu ◽  
Zheng Wang

The end force of North-South permanent magnet linear synchronous motor (NS-PMLSM) fluctuates symmetrically with a period of one pole. Different from it, the end force’s fluctuation cycle of the consequent-pole permanent magnet linear synchronous motor (CP-PMLSM) is usually two poles and asymmetrical. Especially, within two half cycles, the end force presents complex asymmetric characteristics. In this paper, a piecewise function model of the end force of CP-PMLSM is established. Then a primary segmented design method for adjusting the period, symmetry and phase of the end force waveform is proposed. The two-segment and grouped four-segment modular distances are combined and matched to eliminate the odd-numbered harmonics of the end force and suppress the thrust ripple. A slotless primary core experimental platform and a slotted CP-PMLSM prototype are manufactured and tested to verify the theoretical analysis and simulation results.


2021 ◽  
Author(s):  
Zheng Chen ◽  
Jin Wang ◽  
Zhijian Hu ◽  
Jianqiu Xiao ◽  
Libing Zhou ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 254
Author(s):  
Hui Wang ◽  
Kwok Tong Chau ◽  
Christopher H. T. Lee ◽  
C. C. Chan ◽  
Tengbo Yang

To conserve rare earth resources, consequent-pole permanent-magnet (CPPM) machine has been studied, which employs iron-pole to replace half PM poles. Meanwhile, to increase flux-weakening ability, hybrid excitation CPPM machine with three-dimensional (3-D) flux flow has been proposed. Considering finite element method (FEM) is time-consuming, for the analysis of the CPPM machine, this paper presents a nonlinear varying-network magnetic circuit (NVNMC), which can analytically calculate the corresponding electromagnetic performances. The key is to separate the model of CPPM machine into different elements reasonably; thus, the reluctances and magnetomotive force (MMF) sources in each element can be deduced. While taking into account magnetic saturation in the iron region, the proposed NVNMC method can accurately predict the 3-D magnetic field distribution, hence determining the corresponding back-electromotive force and electromagnetic power. Apart from providing fast calculation, this analytical method can provide physical insight on how to optimize the design parameters of this CPPM machine. Finally, the accuracy of the proposed model is verified by comparing the analytical results with the results obtained by using FEM. As a result, with so many desired attributes, this method can be employed for machine initial optimization to achieve higher power density.


2021 ◽  
Vol 141 (11) ◽  
pp. 921-928
Author(s):  
Hiroshi Mitsuda ◽  
Kazumasa Ito ◽  
Tadashi Fukami ◽  
Masato Koyama
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document