scholarly journals Control and Investigation of Operational Characteristics of Variable Speed Wind Turbines with Doubly Fed Induction Generators

Author(s):  
Abdelali AARIB ◽  
Aymane EL MOUDDEN ◽  
Abdelhadi EL MOUDDEN ◽  
Abdelhamid HMIDAT

This article deals with the analysis, modeling, and control of the doubly-fed induction generator (DFIG) for wind turbines. The DFIG wind turbine can deliver more energy to the grid. There are some different methods to modify the DFIG system in order to accomplish the stator reactive power proposed. One of these methods is to modify the DFIG system for nominal voltage to evaluate cost and materials-efficiency consequences. A specific control strategy is implemented according to the vector control strategy. The proportional-integral (PI) regulators used are simple and precise controllers. This type of regulation, which is closed-loop rotor currents, allows adjustment of the sliding of the DFIG. This gives a good adjustment of the powers of the stator and the rotor. The percentage error of the simulation is less than 2 %. The results obtained in these investigations show that it is possible to adjust the powers of the stator, even with a variation of the parameters. The developed method will allow achieving the maximum efficiency of the wind energy conversion chain. The objective of this article is to optimize the quality of energy generated by wind turbines by controlling the reactive stator power and reducing the losses of the energy of the reactive stator power, which must be a physically minimal value. The results will be presented in the Matlab - Simulink environment.

Author(s):  
Fawzi Senani

<span lang="EN-US">The paper presents the complete modeling and control strategy of variable speed wind turbine system (WTS) driven doubly fed induction generators (DFIG). A back-to-back converter is employed for the power conversion exchanged between DFIG and grid. The wind turbine is operated at the maximum power point tracking (MPPT) mode its maximum efficiency. Direct power control (DPC) based on selecting of the appropriate rotor voltage vectors and the errors of the active and reactive power, the control strategy of rotor side converter combines the technique of MPPT and direct power control. In the control system of the grid side converter the direct power control has been used to maintain a constant DC-Link voltage, and the reactive power is set to 0. Simulations results using MATLAB/SIMULINK are presented and discussed on a 1.5MW DFIG wind generation system demonstrate the effectiveness of the proposed control.</span>


2008 ◽  
Vol 13 (4) ◽  
pp. 277-284 ◽  
Author(s):  
Rodrigo Gaiba de Oliveira ◽  
João Lucas da Silva ◽  
Selênio Rocha Silva ◽  
Balduino Rabelo Junior ◽  
Wilfried Hofmann

Author(s):  
Mouna Lamnadi ◽  
Mourad Trihi ◽  
Badre Bossoufi ◽  
Abdelkader Boulezhar

<p>This paper presents a vector control direct (FOC) of double fed induction generator intended to control the generated stator powers. This device is intended to be implemented in a variable-speed wind-energy conversion system connected to the grid. In order to control the active and reactive power exchanged between the machine stator and the grid, the rotor is fed by a bi-directional converter. The DFIG is controlled by standard relay controllers. Details of the control strategy and system simulation were performed using Simulink and the results are presented in this here to show the effectiveness of the proposed control strategy.</p>


2014 ◽  
Vol 9 (9th) ◽  
pp. 1-17
Author(s):  
Mahmoud Badreldien ◽  
Usama Abouzayed ◽  
Amged El-Wakeel ◽  
Almoataz Abdelaziz

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hind Elaimani ◽  
Ahmed Essadki ◽  
Noureddine Elmouhi ◽  
Rachid Chakib

The modeling and control of a wind energy conversion system based on the Doubly Fed Induction Generator DFIG is the discussed theme in this paper. The purpose of this system was to control active and reactive power converted; this control is ensured thanks to the control of the two converters. The proposed control strategies are controlled by PI regulators and the sliding mode technique. In the present work a comparison of the robustness of the 2 controls of the grid side converter (GSC) during a voltage dip is shown. The simulation is carried out using the Matlab/Simulink software with a 300 kW generator.


2009 ◽  
Vol 56 (10) ◽  
pp. 4154-4162 ◽  
Author(s):  
B.C. Rabelo ◽  
W. Hofmann ◽  
J.L. da Silva ◽  
R.G. de Oliveira ◽  
S.R. Silva

Sign in / Sign up

Export Citation Format

Share Document