A Complete Modeling and Control for Wind Turbine Based of a Doubly Fed Induction Generator using Direct Power Control

Author(s):  
Fawzi Senani

<span lang="EN-US">The paper presents the complete modeling and control strategy of variable speed wind turbine system (WTS) driven doubly fed induction generators (DFIG). A back-to-back converter is employed for the power conversion exchanged between DFIG and grid. The wind turbine is operated at the maximum power point tracking (MPPT) mode its maximum efficiency. Direct power control (DPC) based on selecting of the appropriate rotor voltage vectors and the errors of the active and reactive power, the control strategy of rotor side converter combines the technique of MPPT and direct power control. In the control system of the grid side converter the direct power control has been used to maintain a constant DC-Link voltage, and the reactive power is set to 0. Simulations results using MATLAB/SIMULINK are presented and discussed on a 1.5MW DFIG wind generation system demonstrate the effectiveness of the proposed control.</span>

Author(s):  
Abdelali AARIB ◽  
Aymane EL MOUDDEN ◽  
Abdelhadi EL MOUDDEN ◽  
Abdelhamid HMIDAT

This article deals with the analysis, modeling, and control of the doubly-fed induction generator (DFIG) for wind turbines. The DFIG wind turbine can deliver more energy to the grid. There are some different methods to modify the DFIG system in order to accomplish the stator reactive power proposed. One of these methods is to modify the DFIG system for nominal voltage to evaluate cost and materials-efficiency consequences. A specific control strategy is implemented according to the vector control strategy. The proportional-integral (PI) regulators used are simple and precise controllers. This type of regulation, which is closed-loop rotor currents, allows adjustment of the sliding of the DFIG. This gives a good adjustment of the powers of the stator and the rotor. The percentage error of the simulation is less than 2 %. The results obtained in these investigations show that it is possible to adjust the powers of the stator, even with a variation of the parameters. The developed method will allow achieving the maximum efficiency of the wind energy conversion chain. The objective of this article is to optimize the quality of energy generated by wind turbines by controlling the reactive stator power and reducing the losses of the energy of the reactive stator power, which must be a physically minimal value. The results will be presented in the Matlab - Simulink environment.


Author(s):  
Mohamed Amine Beniss ◽  
Hassan El Moussaoui ◽  
Tijani Lamhamdi ◽  
Hassane El Markhi

<span lang="EN-US">The paper proposes a complete modeling and control technique of variable speed wind turbine system (WTS) based on the doubly fed induction generator (DFIG). Two levels back-to-back converter is used to ensure the energy transfer between the DFIG rotor and the grid. The wind turbine to operate efficiently, a maximum power point tracking (MPPT) algorithm is implemented. Then, direct power control (DPC) strategy has been combined with the MPPT technique in order to guarantee the selection of the appropriate rotor voltage vectors and to minimize the active and reactive power errors. Finally, the simulation is performed by using MATLAB/simulink platform basing on 7.5KW DFIG wind generation system, and the results prove the effectiveness of our proposed control technique.</span>


2019 ◽  
Vol 24 (3) ◽  
pp. 77 ◽  
Author(s):  
Alhato ◽  
Bouallègue

This study presents an intelligent metaheuristics-based design procedure for the Proportional-Integral (PI) controllers tuning in the direct power control scheme for 1.5 MW Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT) systems. The PI controllers’ gains tuning is formulated as a constrained optimization problem under nonlinear and non-smooth operational constraints. Such a formulated tuning problem is efficiently solved by means of the proposed Thermal Exchange Optimization (TEO) algorithm. To evaluate the effectiveness of the introduced TEO metaheuristic, an empirical comparison study with the homologous particle swarm optimization, genetic algorithm, harmony search algorithm, water cycle algorithm, and grasshopper optimization algorithm is achieved. The proposed TEO algorithm is ensured to perform several desired operational characteristics of DFIG for the active/reactive power and DC-link voltage simultaneously. This is performed by solving a multi‐objective function optimization problem through a weighted‐sum approach. The proposed control strategy is investigated in MATLAB/environment and the results proved the capabilities of the proposed control system in tracking and control under different scenarios. Moreover, a statistical analysis using non-parametric Friedman and Bonferroni–Dunn’s tests demonstrates that the TEO algorithm gives very competitive results in solving global optimization problems in comparison to the other reported metaheuristic algorithms.


Author(s):  
A. Rahab ◽  
F. Senani ◽  
H. Benalla

This article describes firstly a wind power production line, principally a wind turbine constitutes her and brushless doubly fed induction generator (BDFIG). The models of these components are developed, and control objective of BDFIG is to achieve a dynamic performance similar to the doubly fed induction generator (DFIG) using a stator flux field oriented control (FOC) and direct power control (DPC) strategy. After, the simulation program using Matlab/Simulink has been developed. The performances of this strategy are evaluated and analyzed, so the results show a good robustness great dynamic and a precision of speed.


Sign in / Sign up

Export Citation Format

Share Document