Journal of Energy
Latest Publications


TOTAL DOCUMENTS

133
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 3)

Published By Hindawi Limited

2314-615x, 2356-735x

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
A. Arbie ◽  
Z. A. Hasan ◽  
A. W. Nuayi

This study is aimed at determining the piezoelectric configuration for generating electricity from wave power through the design of a prototype model named Cov-TOTal. The study was carried out in Tomini Bay, Lopo Village, Batudaa Pantai District, Gorontalo Regency, located at approximately ±50 meters from the shoreline, while the piezoelectric construction was arranged in parallel with varying numbers of 28, 70, and 90 pieces. The result showed that the amount of piezoelectric configuration affects the value of the voltage and electric current generated by the Cov-TOTal model. Furthermore, the average electric voltage values were 17.58, 20.76, and 29.85 volts, while the average current was 1.16, 1.73, and 2.01 mA for each piezoelectric amount. Therefore, the largest values of power and electrical energy for each piezoelectric are 16.65 mW and 0.56 joules, 31.82 mW and 1.20 joules, and 44.59 mW and 1.77 joules, respectively. This study concluded that the amount of piezoelectric configuration has a significant effect on the voltage, current, power, and electrical energy produced.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ronald k. Bett ◽  
Anil Kumar ◽  
Zachary O. Siagi

Used tyres pose a threat to the environment, especially in developing countries, since the current disposal methods lead to environmental pollution. Pyrolysis liquid from used tyres can be used as a source of fuel to replace petroleum diesel. Microwave pyrolysis is an alternative valorization process that is supposed to save energy and, therefore, is environment friendly. In the current study, microwave pyrolysis was used to produce liquid fuel. Processing variable levels for microwave were power levels of 20, 30, 40, 50, 60, 80, and 100%; the reaction times were 8, 13, 18, 23, and 28 minutes; and the particle sizes were 25, 50, 100, and 200 mm2. Design-Expert 13 was used for data analysis and optimization, and GC-MS was used for chemical composition analysis, while physiochemical properties were tested using standard methods. Response surface methodology (RSM) was used to study the effects of operating variables and identify the points of optimal yields. For microwave pyrolysis, the highest liquid yield of 39.1 wt. % was at 50% power, 18 min reaction time, and particle size of 25 mm2. The yield decreased as the particle size increased. RSM gave conditions for optima in agreement with the experimental results. The calorific value for liquid fuel was 48.99 MJ/kg. GC-MS analysis showed that the oil comprised complex mixtures of organic compounds with limonene, toluene, and xylene as major components. The liquid fuel properties meet the required international standards and can be used as an alternative to diesel fuel.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
N. Laban Ongaki ◽  
Christopher M. Maghanga ◽  
Joash Kerongo

Background. Global warming is a growing threat in the world today mainly due to the emission of CO2 caused by the burning of fossil fuel. Consequently, countries are being forced to seek potential alternative sources of energy such as wind, solar, and photovoltaic among many others. However, the realization of their benefits is faced with challenges. Though wind stands a chance to solve this problem, the lack of adequate site profiles, long-term behavioural information, and specific data information that enables informed choice on site selection, turbine selection, and expected power output has remained a challenge to its exploitation. In this research, Weibull and Rayleigh models are adopted. Wind speeds were analyzed and characterized in the short term and then simulated for a long-term measured hourly series data of daily wind speeds at a height of 10 m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent the mean wind speed, diurnal variations, daily variations, and monthly variations. To verify the models, statistical tools of Chi square, RMSE, MBE, and correlational coefficient were applied. Also, the method of measure, correlate, and predict was adopted to check for the reliability of the data used. The wind speed frequency distribution at the height of 10 m was found to be 2.9 ms-1 with a standard deviation of 1.5. From the six months’ experiments, averages of wind speeds at hub heights of 10 m were calculated and found to be 1.7 m/s, 2.4 m/s, and 1.3 m/s, for Ikobe, Kisii University, and Nyamecheo stations, respectively. The wind power density of the region was found to be 29 W/m2. By a narrow margin, Rayleigh proves to be a better method over Weibull in predicting wind power density in the region. Wind speeds at the site are noted to be decreasing over the years. The region is shown as marginal on extrapolation to 30 m for wind energy generation hence adequate for nongrid connected electrical and mechanical applications. The strong correlation between the site wind profiles proves data reliability. The gradual decrease of wind power over the years calls for attention.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Brice Smith ◽  
Douglas Armstead

This paper presents new evidence supporting the development of a screening threshold to evaluate the impact aggregations of solar PV facilities in the northeastern United States can have on voltage deviations in the distribution grid (often called flicker). Using measurements from solar irradiance meters and customer-sited monitoring equipment for residential and light commercial solar systems in Central New York along with data from the Measurement and Instrumentation Data Centers at the Oak Ridge National Laboratory, Elizabeth City State University, and Bluefield College, we present multiple lines of support for the adoption of a flicker screening threshold equivalent to a 5% change in voltage resulting from a full-on to full-off transition of a solar facility. This approach is based on both the newer flicker perception limits in IEEE 1453-2015 and the previous limits derived from the flicker curves in IEEE 519-1992 and is consistent with recent draft recommendations from the Electric Power Research Institute (EPRI) for use in New York. Measurements of correlations between fluctuations at different sites along with a model for high densities of solar facilities are applied to allow the impact of multiple systems on a single feeder to be taken into account while maintaining the simplicity of a single screening threshold.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sylvester William Chisale ◽  
Patrick Mangani

Energy situation in Malawi is continuing facing critical challenges to satisfy the existing demand. However, energy consumption and energy conservation studies have been neglected to help overcome this problem. In this paper, electric energy audit was conducted for a commercial building in Mchinji, Malawi, in order to identify energy-saving opportunities. The study employed a mixed method research which involved a series of surveys, observation, data collection, and analysis. The current energy consumption was determined and compared with the proposed energy consumption after replacing some equipment. The proposed system saved up to 33.46% of energy. The study also suggested behavior change towards energy saving. Additionally, an alternative energy system was also suggested. Thus, the HOMER software was employed to design, optimize, and analyze a solar-battery-grid-connected energy system. The proposed system has a simple payback period of 9.8 years. The system’s cost of energy was estimated as 0.0372 $/kWh, and the capital cost was $ 150,887.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tale Geddafa ◽  
Yoseph Melka ◽  
Getachew Sime

Biogas is environmentally sound and economically viable, clean, and renewable energy source. Despite its numerous benefits and dissemination efforts, the adoption of biogas technology has been low. The objective of this study was to assess factors determining adoption of biogas technology as an alternative energy source at household level in Aleta Wondo district, southern Ethiopia. A multistage sampling technique was employed to select sample households. A total of 148 sample households, 51 biogas technology adopters, and 97 nonadopter households were surveyed. The collected data were analyzed by inferential statistics and econometric model using STATA version 13.1. Results from the probit model showed that education level of household head, annual income level, livestock holding size, access to technical support, and level of awareness have significant positive influence on households’ decision to adopt biogas technology. Other factors include poor performance of biogas plants associated to technical problems, and high installation costs unaffordable to the majority of rural population had a negative implication in adoption process. These are also the factors contributing to low adoption. Therefore, raising the population awareness on the benefits of biogas and assigning the biogas technicians who can give immediate maintenance services at “Kebele” level could extend the biogas technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Moustafa Elshafei ◽  
Abdelrahman Ibrahim ◽  
Amr Helmy ◽  
Mostafa Abdallah ◽  
Amgad Eldeib ◽  
...  

Recently, the technology of floating photovoltaic panels has demonstrated several advantages over land installations, including faster deployment, less maintenance cost, and higher efficiency. Lake Nasser is the second largest man-made freshwater lake in the world with a surface area of almost 5000 square km. Being in one of the hottest areas in the world, evaporation of water causes loss of very precious and scarce resources: freshwater. Fortunately, the lake is also located in a very rich area in solar energy. This paper presents a study to utilize Lake Nasser’s surface for massive production of solar energy, while significantly reducing the loss of water by evaporation from the lake surface. The project has the potential to be one of the largest producers of low-cost clean electric energy in the world for Europe and the Middle East and North Africa (MENA) region, especially with the ongoing efforts to connect the North African countries with the European super power grid. The study shows that the first phase of the project is expected to deliver about 16% of European need of electricity and save about 3 billion m3 of freshwater. The subsequent phases will provide low-cost green energy to replace the combustible fuels in Europe by 2045, while saving up to 10-12 billion m3 of freshwater lost by evaporation from Lake Nasser.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Alex K. Koech ◽  
Anil Kumar ◽  
Zachary O. Siagi

The present technology of transesterification of vegetable oils to produce biodiesel, which is suited to replace petrodiesel, has economic challenges, and therefore, alternative sources are being explored. Microalgae, a renewable, third-generation biofuel resource, have the potential to become a viable feedstock due to their high oil content and environmentally friendly nature. The present study investigates the effect of microwave irradiation on the simultaneous extraction and transesterification of algae lipids to produce fatty acid methyl ester (FAME), in a batch reaction system using sulphuric acid catalyst. In situ transesterification combines the two steps of lipid extraction and transesterification into a single step. The microwave synthesis unit comprised of a 3-neck round bottom flask inside a 1300-Watt microwave oven, fitted with a quick-fit condenser and having an external stirrer. Response surface methodology (RSM) was used to analyse the influence of process variables, dry algae to methanol ratio 1 : 4 − 1 : 14   g / ml , algae biomass to catalyst ratio 1 : 0.0032 − 1 : 0.0368   wt % , and reaction time 1 − 11   min , at 500  rpm stirring rate for in situ reaction. FAME was analysed using gas chromatography (GC). The total lipid content of Arthrospira Spirulina platensis microalgae biomass was found to be 10.7 % by weight. The algae biomass also contained proteins at   51.83 % , moisture content at 7.8 % , and ash content 14.30 % by weight. RSM gave the optimum process conditions as dry algae biomass feed to methanol wt / vol ratio of 1 : 9, catalyst concentration of 2   wt % , and reaction time of   7   minutes   for a maximum FAME yield of 83.43   wt % . The major fatty acid composition of FAME was palmitic 43.83 % , linoleic   38.83 % , and linolenic 19.41 % . FAME properties obtained according to European Standards (EN 14214) and American Society for Testing and Materials (ASTM D 6751) standards were as follows: flash point 16 4 o C calorific value 32,911   kJ / kg , acid value 0.475 KOH / g , viscosity 4.45   m m 2 / s , and specific gravity   0.868 . The study showed that Arthrospira Spirulina platensis microalgae lipid FAME met the biodiesel standards (EN 14214 and ASTM D 6751) and has the potential to replace petrodiesel. Microwave irradiation increased the reaction rate resulting in a reduced reaction time of 7 minutes (as compared to 8 hours for conventional heating) and therefore was found to be a superior heating mode as compared to conventional heating.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yonghua Li ◽  
Meijun Li ◽  
Yangyang Guo

During the working period of decay heat removal system, the flow rate of liquid sodium in wire-wrapped fuel assembly is very low, generally Re < 1000 . In the present study, both experimental methods and numerical simulation methods are applied. First, water experiment of 37-pin wire-wrapped rod bundle was carried out. Then, the numerical simulation study was carried out, the experimental data and the numerical simulation results were compared and analyzed, and a suitable turbulence model was selected to simulate the liquid sodium medium. Finally, numerical simulations under different boundary conditions were performed. Results indicate that except for the low Reynolds number k - ε turbulence model, other turbulence models have little difference with the experimental results. The results of realizable k - ε turbulence model are the most close to the experimental results. Compared with the friction factor obtained by using water medium and liquid sodium medium, the calculation results of water medium and sodium medium under the same condition are basically consistent, with the deviation within 1%. The reason is that the velocity of water is higher than sodium medium at the same Reynolds number, and the transverse disturbance caused by helical wire is larger.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Seth Kofi Debrah ◽  
Mark Amoah Nyasapoh ◽  
Felix Ameyaw ◽  
Stephen Yamoah ◽  
Nii Kwashie Allotey ◽  
...  

Energy has become the driving force for national infrastructure development, including the socioeconomic development of every society. Ghana, like many other African countries, formulated developmental policies to attain middle-income status in the medium term. Socioeconomic growth comes with an upsurge in electricity consumption. Ghana seeks to use industrialization to achieve its middle-income target. To achieve this target, there is a need to develop a reliable, sustainable and affordable energy supply in a benign environment. The entry point for Ghana to become a middle-income economy is a cost-effective and reliable electricity supply. Ghana is endowed with fossil fuel, hydro and renewable resources to drive its industrial ambitions, but the indigenous gas fields feeding some thermal plants for electricity production are decreasing and could run out by early 2030 unless new fields are discovered and may also be affected by price volatility. The untapped hydro resources are also small and unreliable if the country seeks to become a middle-income country. Despite the abundant renewable resources, they are intermittent and do not present a baseload option. In safeguarding Ghana’s energy security, the country seeks to include nuclear energy into her energy mix. This research paper discusses the major drivers for nuclear energy inclusion.


Sign in / Sign up

Export Citation Format

Share Document