scholarly journals Relative dimension r-dim and finite spaces

2013 ◽  
Vol 13 (1) ◽  
Author(s):  
A.C. Megaritis
2008 ◽  
Vol 42 (6-8) ◽  
pp. 733-746
Author(s):  
Fayçal Ben Adda
Keyword(s):  

2008 ◽  
Vol 8 (3) ◽  
pp. 1763-1780 ◽  
Author(s):  
Jonathan Barmak ◽  
Elias Minian
Keyword(s):  

10.37236/556 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Kazuaki Ishii

There are many nonisomorphic orthogonal arrays with parameters $OA(s^3,s^2+s+1,s,2)$ although the existence of the arrays yields many restrictions. We denote this by $OA(3,s)$ for simplicity. V. D. Tonchev showed that for even the case of $s=3$, there are at least 68 nonisomorphic orthogonal arrays. The arrays that are constructed by the $n-$dimensional finite spaces have parameters $OA(s^n, (s^n-1)/(s-1),s,2)$. They are called Rao-Hamming type. In this paper we characterize the $OA(3,s)$ of 3-dimensional Rao-Hamming type. We prove several results for a special type of $OA(3,s)$ that satisfies the following condition: For any three rows in the orthogonal array, there exists at least one column, in which the entries of the three rows equal to each other. We call this property $\alpha$-type. We prove the following. (1) An $OA(3,s)$ of $\alpha$-type exists if and only if $s$ is a prime power. (2) $OA(3,s)$s of $\alpha$-type are isomorphic to each other as orthogonal arrays. (3) An $OA(3,s)$ of $\alpha$-type yields $PG(3,s)$. (4) The 3-dimensional Rao-Hamming is an $OA(3,s)$ of $\alpha$-type. (5) A linear $OA(3,s)$ is of $\alpha $-type.


1984 ◽  
Vol 112 (2) ◽  
pp. 391-406 ◽  
Author(s):  
Mieczysław Kula ◽  
Murray Marshall ◽  
Andrzej Sładek

2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Cristian González-Avilés

AbstractWe obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.


This chapter presents a higher-order-logic formalization of the main concepts of information theory (Cover & Thomas, 1991), such as the Shannon entropy and mutual information, using the formalization of the foundational theories of measure, Lebesgue integration, and probability. The main results of the chapter include the formalizations of the Radon-Nikodym derivative and the Kullback-Leibler (KL) divergence (Coble, 2010). The latter provides a unified framework based on which most of the commonly used measures of information can be defined. The chapter then provides the general definitions that are valid for both discrete and continuous cases and then proves the corresponding reduced expressions where the measures considered are absolutely continuous over finite spaces.


1997 ◽  
Vol 40 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Manfred Hartl

AbstractDimension subgroups and Lie dimension subgroups are known to satisfy a ‘universal coefficient decomposition’, i.e. their value with respect to an arbitrary coefficient ring can be described in terms of their values with respect to the ‘universal’ coefficient rings given by the cyclic groups of infinite and prime power order. Here this fact is generalized to much more general types of induced subgroups, notably covering Fox subgroups and relative dimension subgroups with respect to group algebra filtrations induced by arbitrary N-series, as well as certain common generalisations of these which occur in the study of the former. This result relies on an extension of the principal universal coefficient decomposition theorem on polynomial ideals (due to Passi, Parmenter and Seghal), to all additive subgroups of group rings. This is possible by using homological instead of ring theoretical methods.


Sign in / Sign up

Export Citation Format

Share Document