orthogonal array
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 125)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Jashanpreet Singh ◽  
Satish Kumar ◽  
S.K. Mohapatra

Various grades of stainless steel are used to fabricate the pump impeller, casings, and seals used in heavy-duty erosion and corrosion conditions. In the present study, stainless steel (SS316L, SS304, SDSS2507) and grey cast iron used in the fabrication of heavy-duty pump impellers were taken for the analysis of solid particle erosion. Experiments were conducted on the lab-scale slurry pot tester. Fly ash slurry was prepared of different concentrations (wt%). Taguchi’s orthogonal array is used to design the experiments of erosion wear for the variation of rotational speed, solid concentration, time, and particle size. Results showed that SS316L showed superior microhardness and wear behavior against the fly ash slurry followed by SS304, SDSS2507 and Grey cast iron.  


Author(s):  
P. Devendran ◽  
P. Ashoka Varthanan

Abstract Welding operation decides the quality of product standards in all metal work products like automobiles, aerospace vehicles, and many more. The quality of the welding process is more reliable by automating the process with robots. In this research work, the GMAW operation is automated with the “Fanuc Robot Arc mate 100iC/12” robot. The material characteristics such as ultimate tensile strength, hardness, and impact strength of weldments are predicted using a fuzzy system using triangular membership function (TrMF) and trapezoidal membership function (TMF). The simulated results are validated by comparing with experimental work, the experiments are designed using orthogonal array L18, and material characteristics are studied using fractography test. The fuzzy system is trained with experimental results using the IF-Then rule base with the help of the L18 orthogonal array. The inference system has predicted the accuracy rate of weldment mechanical properties, showing a lower error rate.


Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


Author(s):  
Ajay Prakash Pasupulla ◽  
Panomwat Amornphimoltham ◽  
Prem Charles ◽  
Venkatesan Shanmugha Sundaram ◽  
M.M. Ramakrishna

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chien-Yi Huang ◽  
Christopher Greene ◽  
Chao-Chieh Chan ◽  
Ping-Sen Wang

Purpose This study aims to focus on the passive components of System in Package SiP modules and discusses the geometric pad designs for 01005-sized passive components, the front end design of the hole size and shape of the stencil and the parameters of the stencil sidewall coating, to determine the optimum parameter combination. Design/methodology/approach This study plans and conducts experiments, where a L8(27) inner orthogonal array is built to consider the control factors, including a L4(23) outer orthogonal array to consider the noise factor, and the experimental data are analyzed by using the technique for order preference by similarity to ideal solution multi-quality analysis method. Findings The results show that the optimum design parameter level combination is that the solder mask opening pad has no solder mask in the lower part of the component, the pad width is 1.1 times that of the component width, the pad length is 1.75 times that of the electrode tip length, the pad spacing is 5 mil, the stencil open area is 90% of the pad area, the stencil opening corner has a 3 mil chamfer angle, and the stencil sidewall is free of nano-coating. Originality/value The parameter design and multi-quality analysis method, as proposed in this study, can effectively develop the layout of passive components on a high-density SiP module substrate, to stabilize the process and increase the production yield.


2021 ◽  
Author(s):  
Sangeetha M. ◽  
Malathi S

Abstract Software testing is an emerging technology which is use to increase the rate of error detection as early as possible in the software testing life cycle process. Test case prioritization technique plays a crucial role in organizing the test cases in sequencing order both ascending and descending such that test cases having high priority or high severity are planned to get executed doing a proper risk-based analysis. This prioritization technique effectively addresses two important organization constraints namely “Time” and “Budget”, also improve the quality of service. The proposed work is all about how effectively we can sequence the application modules for testing during Test plan phase using fuzzy logic and how to write optimized test cases efficiently design during Orthogonal Array Test Strategy (OATS) in Test design phase of testing life Cycle.


Sign in / Sign up

Export Citation Format

Share Document