Development of Korean Standard Horizontal Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records

2016 ◽  
Vol 20 (6) ◽  
pp. 369-378 ◽  
Author(s):  
Jae Kwan Kim ◽  
◽  
Jung Han Kim ◽  
Jin Ho Lee ◽  
Tae Min Heo
2004 ◽  
Vol 20 (2) ◽  
pp. 413-426 ◽  
Author(s):  
Farzad Naeim ◽  
Arzhang Alimoradi ◽  
Shahram Pezeshk

This paper presents a new approach to selection of a set of recorded earthquake ground motions that in combination match a given site-specific design spectrum with minimum alteration. The scaling factors applied to selected ground motions are scalar values within the range specified by the user. As a result, the phase and shape of the response spectra of earthquake ground motions are not tampered with. Contrary to the prevailing scaling methods where a preset number of earthquake records (usually between a single component to seven pairs) are selected first and scaled to match the design spectrum next, the proposed method is capable of searching a set consisting of thousands of earthquake records and recommending a desired subset of records that match the target design spectrum. This task is achieved by using a genetic algorithm (GA), which treats the union of 7 records and corresponding scaling factors as a single “individual.” The first generation of individuals may include a population of, for example, 200 records. Then, through processes that mimic mating, natural selection, and mutation, new generations of individuals are produced and the process continues until an optimum individual (seven pairs and scaling factors) is obtained. The procedure is fast and reliable and results in records that match the target spectrum with minimal tampering and the least mean square of deviation from the target spectrum.


Author(s):  
GENE F. SIRCA ◽  
HOJJAT ADELI

In earthquake-resistant design of structures, for certain structural configurations and conditions, it is necessary to use accelerograms for dynamic analysis. Accelerograms are also needed to simulate the effects of earthquakes on a building structure in the laboratory. A new method of generating artificial earthquake accelerograms is presented through adroit integration of neural networks and wavelets. A counterpropagation (CPN) neural network model is developed for generating artificial accelerograms from any given design spectrum such as the International Building Code (IBC) design spectrum. Using the IBC design spectrum as network input means an accelerogram may be generated for any geographic location regardless of whether earthquake records exist for that particular location or not. In order to improve the efficiency of the model, the CPN network is modified with the addition of the wavelet transform as a data compression tool to create a new CPN-wavelet network. The proposed CPN-wavelet model is trained using 20 sets of accelerograms and tested with additional five sets of accelerograms available from the U.S. Geological Survey. Given the limited set of training data, the result is quite remarkable.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
F. G. Golzar ◽  
R. Shabani ◽  
S. Tariverdilo ◽  
G. Rezazadeh

Using extended Hamiltonian variational principle, the governing equations for sloshing response of floating roofed storage tanks are derived. The response of the floating roofed storage tanks is evaluated for different types of ground motions, including near-source and long-period far-field records. Besides comparing the response of the roofed and unroofed tanks, the effect of different ground motions on the wave elevation, lateral forces, and overturning moments induced on the tank is investigated. It is concluded that the dimensionless sloshing heights for the roofed tanks are solely a function of their first natural period. Also it is shown that while long-period far-field ground motions control the free board height, near-source records give higher values for lateral forces and overturning moments induced on the tank. This means that same design spectrum could not be used to evaluate the free board and lateral forces in the seismic design of storage tanks. Finally, two cases are studied to reveal the stress patterns caused by different earthquakes.


2012 ◽  
Vol 28 (4) ◽  
pp. 1711-1721
Author(s):  
Emrah Erduran ◽  
Conrad Lindholm

The effects of using design spectrum shape over actual response spectra on earthquake damage estimates has been investigated. A series of numerical simulations were conducted to estimate the expected damage. The simulations were conducted with four different spectral shapes, two different ground-motion prediction equations (GMPEs) and three different soil classes. As a result of the numerical simulations, it was observed that the use of design spectrum shape leads to over- or underestimation of damage estimates relative to those obtained from the actual spectrum computed using GMPE. The damage estimates were observed to be sensitive to the selected design spectrum shape, the GMPE used to compute the spectral values, the soil type, and the fundamental period of the building typology. It was also observed that Eurocode- and IBC-type design spectrum shapes led to significantly different damage estimates compared to one another.


Sign in / Sign up

Export Citation Format

Share Document