scholarly journals Role of Composition on Polymerization Shrinkage and Shrinkage Stress in Dental Composites

2021 ◽  
Vol 6 (1) ◽  
pp. 31-44
Author(s):  
V Susila Anand
2011 ◽  
Vol 124 (1) ◽  
pp. 436-443 ◽  
Author(s):  
Yuncong Li ◽  
Xiang Sun ◽  
Jihua Chen ◽  
Jie Xiong ◽  
Xiaoyi Hu

2012 ◽  
Vol 26 (3) ◽  
pp. 202-208 ◽  
Author(s):  
Karla Mychellyne Costa Oliveira ◽  
Simonides Consani ◽  
Luciano Souza Gonçalves ◽  
William Cunha Brandt ◽  
Renzo Alberto Ccahuana-Vásquez

2021 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Rahmi Khairani Aulia

ABSTRACT:Composite resins are currently the most popular restorative material in dentistry. This is due to good aesthetics and maximum conservation ability. Behind these advantages, there are disbenefits of composite resin materials, such as polymerization shrinkage, which can lead to restoration failure. Various attempts have been investigated to reduce the shrinkage incidence of composite resins, one of which is the technique of placing the restorative material into the cavity. The restoration filling technique is recognized as a significant factor in shrinkage stress. By using a special filling technique, the polymerization shrinkage damage stress can be reduced. There are several techniques in performing composite resin fillings, including bulk and incremental techniques. These techniques have their respective advantages and disadvantages. The aim of this literature review was to compare the physical properties of composite resin restorations with bulk filling and incremental techniques. Physical properties that being studied include polymerization shrinkage, stress shrinkage, degree of conversion, bonding strength, water resorption, color stability, and temperature increase. Comparing the two techniques, composite resin with incremental filling technique has superior physical properties compared to bulk technique. From the comparison of the two techniques, the composite resin with incremental filling technique has superior physical properties compared to the bulk technique, especially in higher conversion which causes lower shrinkage stress. This situation makes the incremental technique provide better bond strength, water resorption, color stability, and lower temperature rise.Keywords: Bulk, Composite Resin, Incremental,  Physical Properties, Restoration, Restoration Technique


2014 ◽  
Vol 30 ◽  
pp. e57
Author(s):  
H. Al-Sunbul ◽  
N. Silikas ◽  
D.C. Watts

2005 ◽  
Vol 13 (3) ◽  
pp. 223-234
Author(s):  
C. Sanglar ◽  
M. Defay ◽  
H. Waton ◽  
A. Bonhomme ◽  
S. Alamercery ◽  
...  

This work on organic dental composites was undertaken to determine the role of residual reactive methacrylate functions at the end of the photopolymerization cycle, and to investigate the fate of the residual monomers and oligomers in organic (ethanol) and aqueous (water and artificial saliva) media. The results show that all the methacrylate monomers present in dentine migrate into ethanol (about 1% (w/w)). In aqueous media on the other hand, only the most hydrophilic monomer (UDMA) migrates (0.05% (w/w)) into water and 0.03% into artificial saliva (pH = 9). This desorption in the three media is accompanied by the hydrolysis of monomers, leading to the formation of monohydrolyzed urethane dimethacrylate (UDMA) and bis-phenyl glycidyl dimethacrylate (BISGMA); UDMA and BISGMA are completely hydrolyzed in artificial saliva. The alkalinity of the milieu apparently favours the hydrolysis of methacrylate functions.


2014 ◽  
Vol 39 (4) ◽  
pp. 374-382 ◽  
Author(s):  
HM El-Damanhoury ◽  
JA Platt

SUMMARY The present study assessed the polymerization shrinkage stress kinetics of five low-shrinkage light-cured bulk-fill resin composites: Surefil SDR flow (SF, Dentsply), Tetric EvoCeram Bulkfil (TE, Ivoclar Vivadent), Venus Bulk Fill (VB, Heraeus Kulzer), x-tra fil (XF, Voco), and experimental bulk fill (FB, 3M ESPE). Filtek Z250 (FZ, 3M ESPE) was used as a control. Real-time shrinkage stress of investigated composites was measured using a tensometer; maximum shrinkage stress, stress rate (Rmax), and time to reach maximum stress rate (tmax) were recorded. Flexural strength and modulus were measured using a standard procedure, and curing efficiency of 4-mm long specimens was determined using bottom/top percentage Knoop microhardness. Data were analyzed using one-way analysis of variance and Bonferroni multiple range tests at a significance level of α=0.05. Results of shrinkage stress, Rmax, and tmax of all bulk-fill materials were significantly lower (p<0.05) than those of the control except for XF. All tested bulk-fill materials were able to achieve acceptable curing efficiency (≥80% bottom/top percentage) at 4-mm depth. In conclusion, this study reports a significant reduction in polymerization shrinkage stress while maintaining comparable curing efficiency at 4 mm for some bulk-fill composites and supports their potential use in posterior clinical situations.


Sign in / Sign up

Export Citation Format

Share Document