scholarly journals THE COMPARISON OF RESIN-BASED COMPOSITES PHYSICAL PROPERTIES BETWEEN BULK-FILL TECHNIQUE AND INCREMENTAL TECHNIQUE

2021 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Rahmi Khairani Aulia

ABSTRACT:Composite resins are currently the most popular restorative material in dentistry. This is due to good aesthetics and maximum conservation ability. Behind these advantages, there are disbenefits of composite resin materials, such as polymerization shrinkage, which can lead to restoration failure. Various attempts have been investigated to reduce the shrinkage incidence of composite resins, one of which is the technique of placing the restorative material into the cavity. The restoration filling technique is recognized as a significant factor in shrinkage stress. By using a special filling technique, the polymerization shrinkage damage stress can be reduced. There are several techniques in performing composite resin fillings, including bulk and incremental techniques. These techniques have their respective advantages and disadvantages. The aim of this literature review was to compare the physical properties of composite resin restorations with bulk filling and incremental techniques. Physical properties that being studied include polymerization shrinkage, stress shrinkage, degree of conversion, bonding strength, water resorption, color stability, and temperature increase. Comparing the two techniques, composite resin with incremental filling technique has superior physical properties compared to bulk technique. From the comparison of the two techniques, the composite resin with incremental filling technique has superior physical properties compared to the bulk technique, especially in higher conversion which causes lower shrinkage stress. This situation makes the incremental technique provide better bond strength, water resorption, color stability, and lower temperature rise.Keywords: Bulk, Composite Resin, Incremental,  Physical Properties, Restoration, Restoration Technique

2016 ◽  
Vol 19 (2) ◽  
pp. 72 ◽  
Author(s):  
Rafael Francisco Lia Mondelli ◽  
Marilia Mattar de Amoêdo Campos Velo ◽  
Rafael Simões Gonçalves ◽  
Bhenya Ottoni Tostes ◽  
Sergio Kiyoshi Ishikiriama ◽  
...  

<p>Objective: Composite polymerization shrinkage<br />stress is an inherent process of chemical and light<br />composite resin activation. Consequently, this fact has<br />been associated to potential clinical problems. The<br />aim of the present in vitro study was to evaluate the<br />volume and C-factor influence on chemical and lightcuring<br />composite resin polymerization shrinkage<br />stress, using a non-rigid method that thereby provides<br />lower stress values, causing a minimal deflection in<br />load cell. Materials and Methods: The contraction<br />forces of the Z-250 and Concise composite resins<br />during polymerization were recorded in an UTM in<br />two experiments. In the first experiment, the Z-250<br />composite was inserted beetwen two rectangular<br />steel plates (6.0 x 2.0 mm), varyng the resin volumes<br />and C-factors, in a single increment, polymerized for<br />20 s and the forces generated were recorded for 120<br />s. In the second experiment, a pair of rectangular steel<br />plates (3x2mm) and two square steel plates (2x2mm),<br />with varied heights (2; 3 mm, respectively), were<br />used to determine the C-factor (0.6; 0.3) influence.<br />Results: The polymerized Z-250 results showed that<br />the volume variations, independent of the C-factor,<br />had a direct influence on the shrinkage stress,<br />different from the Concise, which was influenced by<br />the C-factor. Conclusion: The present study showed<br />that a higher volume of composite resins determines<br />an increase in the shrinkage stress of light-curing<br />composites.</p><p><strong>Keywords</strong></p><p>C-factor. Composite resin. Polymerization. Shrinkage<br />stress.</p>


2020 ◽  
Vol 45 (5) ◽  
pp. E217-E226
Author(s):  
RA da Silva Pereira ◽  
GF de Bragança ◽  
ABF Vilela ◽  
RA de Deus ◽  
RR Miranda ◽  
...  

Clinical Relevance The clinician should consider the polymerization shrinkage stress when selecting a composite resin for posterior restorations. The use of post-gel shrinkage values should guide the selection of a composite resin for posterior teeth. SUMMARY Objectives: The objective of this study was to evaluate the effect of the method used for calculation of polymerization shrinkage, total or post-gel, on the shrinkage stress of conventional and bulk-fill composite resins for restoring endodontically treated teeth using finite element analysis. Methods and Materials: Four composite resins were tested for post-gel shrinkage (P-Shr) by the strain-gauge test and total shrinkage (TShr) using an optical method (n=10). Two conventional composite resins, Filtek Z350 XT (3M-ESPE; Z350) and TPH3 Spectrum (Dents-ply; TPH3) and two bulk-fill composite resins. Filtek Bulk-Fill Posterior (3M-ESPE; POST) SureFil SDR flow (Dentsply; SDR) were tested. Elastic modulus (E), diametral tensile strength (DTS), and compressive strength (CS) were also determined (n=10). The residual shrinkage stress was evaluated by finite element analysis with four restorative techniques: incremental with Z350 and TPH3; SDR/TPH3 (two bulk increments of 4 mm and two occlusal increments); and two bulk increments of 5 mm for POST. Data for P-Shr, T-Shr, E, DTS, and CS were analyzed by analysis of variance and Tukey’s test (α=0.05), and residual shrinkage was analyzed quantitatively and qualitatively by the modified von Mises criteria. Results: SDR had the lowest CS values, POST and TPH3 had similar and intermediate values, and Z350 had the highest CS. TPH3 and Z350 had similar DTS values and values higher than SDR. Z350 and POST had higher P-Shr, and SDR had lower T-Shr. T-Shr resulted in higher shrinkage stress than P-Shr values. SDR/TPH3 resulted in higher shrinkage stress when using T-Shr and lower values when using the P-Shr value. Conclusion: T-Shr resulted in higher stress in the enamel and in root dentin close to the pulp chamber than P-Shr values. The selection of the T-Shr or P-Shr changed the ranking of the shrinkage stress of the tested composite resin.


2017 ◽  
Vol 07 (01) ◽  
pp. 025-028
Author(s):  
Lakshmi Nidhi Rao ◽  
Mithra N. Hegde ◽  
Aditya Shetty

AbstractComposite resins represent a class of material widely used in restorative dentistry, not only for anterior aesthetics but also as the first choice to restore posterior teeth. However the key limitation in the use of composite resins as a restorative material is related to shrinkage during polymerization which leads to poor marginal seal, marginal staining, restoration displacement, tooth fracture and recurring caries [1].Polymerization shrinkage may affect negatively the clinical outcome of the restoration. Hence the present study evaluates the Polymerization shrinkage of 2 different posterior composites; Filtek Z350(3M) and everX Posterior(GC), using a pycnometer.Independent Sample T-Test was used to determine statistically significant difference in volumetric shrinkage among the tested composite resins. everX Posterior showed comparatively less shrinkage than Filtek Z350; which can be attributed to the presence of silanated e-glass fibres.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1458
Author(s):  
Bárbara Donadon Reina ◽  
Carolina Santezi Neto ◽  
Patrícia Petromilli Nordi Sasso Garcia ◽  
Marlus Chorilli ◽  
Giovana Maria Fioramonti Calixto ◽  
...  

Curcumin-mediated Photodynamic Inactivation (PDI) has shown great potential to disinfect specific sites on tooth enamel but may involve contact with restorative materials. Thus, before use in dentistry, it is necessary to investigate whether the PDI protocol causes undesirable changes in the surfaces of aesthetic restorative materials and dental enamel. This study investigated the effect of PDI mediated by curcumin (CUR) in a liquid crystal precursor system on color stability (ΔE), surface roughness (Ra), and microhardness (kgf) of three different composite resins and bovine dental enamel specimens. The microhardness and roughness readings were performed 60 days after the treatments while the color readings were performed immediately, 24, 48, and 72 h, 7, 14, 21, 30, and 60 days after the treatments. Results showed that CUR mediated-PDI does not seem to have the potential to promote any esthetic or mechanical changes to the surface of tooth enamel and can be applied safely in clinical practice. However, the results on color, roughness, and hardness obtained for composite resins show that some negative effects can be produced, depending on the type of restorative material; more experiments must be performed with different formulations and, perhaps, with lower concentrations of CUR.


2014 ◽  
Vol 39 (3) ◽  
pp. 325-331 ◽  
Author(s):  
E Karaman ◽  
G Ozgunaltay

SUMMARY Aim To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. Materials and Methods One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. Results All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p&gt;0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p&lt;0.05). Conclusion The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.


2017 ◽  
Vol 31 (suppl 1) ◽  
Author(s):  
Carlos José SOARES ◽  
André Luis FARIA-E-SILVA ◽  
Monise de Paula RODRIGUES ◽  
Andomar Bruno Fernandes VILELA ◽  
Carmem Silvia PFEIFER ◽  
...  

2013 ◽  
Vol 38 (5) ◽  
pp. E144-E153 ◽  
Author(s):  
M Chang ◽  
J Dennison ◽  
P Yaman

SUMMARY Purpose The purpose of this study was to evaluate the physical properties of current formulations of composite resins for polymerization shrinkage, surface hardness, and flexural strength. In addition, a comparison of Knoop and Vickers hardness tests was made to determine if there was a correlation in the precision between the two tests. Materials and Methods Four composite resin materials were used: Filtek LS (3M-ESPE), Aelite LS (Bisco), Kalore (GC America), and Empress Direct (Ivoclar). Ten samples of each composite (shade Vita A2) were used. Polymerization shrinkage was measured with the Kaman linometer using 2-mm-thick samples, cured for 40 seconds and measured with digital calipers for sample thickness. Surface microhardness samples were prepared (2-mm thick × 12-mm diameter) and sequentially polished using 600-grit silicone carbide paper, 9 μm and 1 μm diamond polishing solutions. After 24 hours of dry storage, Knoop (200 g load, 15 seconds dwell time) and Vickers (500 g load, 15 seconds dwell time) hardness tests were conducted. Flexural strength test samples (25 × 2 × 2 mm) were stored in 100% relative humidity and analyzed using a three-point bending test with an Instron Universal Testing Machine (Instron 5565, Instron Corp) applied at a crosshead speed of 0.75 ± 0.25 mm/min. Maximum load at fracture was recorded. One-way analysis of variance and Tukey multiple comparison tests were used to determine significant differences in physical properties among materials. Results Filtek LS had significantly lower shrinkage (0.45 [0.39] vol%). Aelite LS demonstrated the greatest Knoop surface hardness (114.55 [8.67] KHN), followed by Filtek LS, Kalore, and Empress Direct (36.59 [1.75] KHN). Vickers surface hardness was significantly greater for Aelite LS (126.88 [6.58] VH), followed by Filtek LS, Kalore, and Empress Direct (44.14 [1.02] VH). Flexural strength (MPa) was significantly higher for Aelite LS and Filtek LS (135.75 [17.35]; 129.42 [9.48]) than for Kalore and Empress Direct (86.84 [9.04]; 92.96 [9.27]). There is a strong correlation between results obtained using Knoop and Vickers hardness tests (r=0.99), although Vickers values were significantly greater for each material. Conclusion Results suggest that Aelite LS possesses superior hardness and flexural strength, while Filtek LS has significantly less shrinkage compared with the other composites tested.


2019 ◽  
Vol 45 (4) ◽  
pp. 377-386 ◽  
Author(s):  
IO Cardoso ◽  
AC Machado ◽  
DNR Teixeira ◽  
FC Basílio ◽  
A Marletta ◽  
...  

Clinical Relevance Irradiance may decrease as the light-emitting diode (LED) is discharged. Therefore, the LED must be charged carefully to prevent the possibility of influencing the chemical, mechanical, and physical properties of composite resin. SUMMARY The aim of this study was to evaluate the influence of different light-emitting diode (LED) curing units and battery levels on the chemical, mechanical, and physical properties of composite resins. The irradiance for each cycle from full to completely discharged battery level was evaluated, for five different new cordless LED units: Optilight Color (Gnatus), Bluephase (Ivoclar), Valo (Ultradent), Radii Plus (SDI), and Radii Xpert (SDI). After the irradiance evaluation, composite resin specimens were prepared and light cured, while varying the battery level for each LED unit: high level (HL, 100%), medium level (ML, 50%), and low level (LL, 10%). The degree of conversion, diametral tensile strength, sorption, and solubility were also evaluated. Data were checked for homoscedasticity and submitted to two-way and three-way analysis of variance, depending on the test performed, followed by the Tukey test with a significance level of 95%. A negative correlation was found between irradiance and cycles of light curing, which was checked by the Pearson correlation test. Valo and Radii Xpert were not influenced by the battery level in any test performed. However, different battery levels for some LED units can influence the degree of conversion, diametral tensile strength, sorption, and solubility of composite resins.


2021 ◽  
Author(s):  
I Durães ◽  
A Cavalcanti ◽  
P Mathias

SUMMARY Objectives: This study aimed to evaluate the influence of thickness and opacity on the ability of composite resin and ceramic veneer restorations to mask discolored teeth. Methods: Ninety veneers were made of lithium disilicate ceramic, shades BL1 and 0 (IPS e.max Press, Ivoclar Vivadent), and 60 were made of composite resin, shade BL-L (IPS Empress Direct, Ivoclar Vivadent). The veneers measured 4 mm in width x 4 mm in length and had a thickness of 0.7, 1.0, or 1.2 mm. One hundred and fifty human premolars were selected to obtain 150 dental fragments with the following dimensions: 4 mm x 4 mm x 3 mm (width x length x thickness). The fragments were discolored, submitted to color measurement and randomly assigned to 15 groups (n=10) according to the type and opacity of the restorative material (IPS e.max Press: high translucency [HT], low translucency [LT], and medium opacity [MO]; IPS Empress Direct: dentin and enamel) and thickness of the veneers (0.7, 1.0, and 1.2 mm). After cementation of the ceramic or composite resin veneers using a translucent resin cement (RelyX veneer, 3M), a final color measurement was taken from each specimen and the total color variation (ΔE) was calculated by subtracting the initial and the final color measurement. The final lightness (L*) of the restored dental fragments was also calculated. Results: The highest ΔE values were observed for the LT and MO ceramic groups, followed by dentin composite resin. Regarding the different thicknesses of ceramic veneers, every 1.2-mm–thick group had higher values of ΔE, considering their respective opacities (p&lt;0.05). The highest lightness values were found for the LT and MO ceramic veneers (thickness of 1.2 mm). Dentin-shade composite resins showed similar lightness values in all groups. Conclusion: The best thickness/opacity combinations for masking discolored dental substrates were LT and MO ceramic veneers with 1.2-mm thickness. Dentin-shade composite resin veneers with a thickness of 0.7–1.0 mm showed good ability to mask discolored dental substrates.


Sign in / Sign up

Export Citation Format

Share Document