Elliptic Curve Public Key Algorithm Based on Fourier Matrix

Author(s):  
Special Issues Editor
Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


2021 ◽  
Vol 10 (11) ◽  
pp. 3439-3447
Author(s):  
T. J. Wong ◽  
L. F. Koo ◽  
F. H. Naning ◽  
A. F. N. Rasedee ◽  
M. M. Magiman ◽  
...  

The public key cryptosystem is fundamental in safeguard communication in cyberspace. This paper described a new cryptosystem analogous to El-Gamal encryption scheme, which utilizing the Lucas sequence and Elliptic Curve. Similar to Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA), the proposed cryptosystem requires a precise hard mathematical problem as the essential part of security strength. The chosen plaintext attack (CPA) was employed to investigate the security of this cryptosystem. The result shows that the system is vulnerable against the CPA when the sender decrypts a plaintext with modified public key, where the cryptanalyst able to break the security of the proposed cryptosystem by recovering the plaintext even without knowing the secret key from either the sender or receiver.


2013 ◽  
Vol 756-759 ◽  
pp. 1339-1343
Author(s):  
Yu Lian Shang ◽  
Xiu Juan Wang ◽  
Yu Juan Li ◽  
Yu Fei Zhang

Based on Elliptic Curve cryptosystem, a threshold signature scheme characterized by (k,l) joint verification for (t,n) signature is put forward. After being signed by a signer company employing (t, n) threshold signature scheme, the informationmis transmitted to a particular verifier company, and then the signature is verified through the cooperation ofkones from the verifier company withlmembers, so as to realize a directional transmission between different companies. Finally, the application examples of the company encryption communication system, the generating polynomial of company private key and public key were given. The security of this scheme is based on Shamir threshold scheme and Elliptic Curve system, and due to the advantages of Elliptic Curve, the scheme enjoys wider application in practice.


2013 ◽  
pp. 562-583
Author(s):  
Michael Hutter ◽  
Erich Wenger ◽  
Markus Pelnar ◽  
Christian Pendl

In this chapter, the authors explore the feasibility of Elliptic Curve Cryptography (ECC) on Wireless Identification and Sensing Platforms (WISPs). ECC is a public-key based cryptographic primitive that has been widely adopted in embedded systems and Wireless Sensor Networks (WSNs). In order to demonstrate the practicability of ECC on such platforms, the authors make use of the passively powered WISP4.1DL UHF tag from Intel Research Seattle. They implemented ECC over 192-bit prime fields and over 191-bit binary extension fields and performed a Montgomery ladder scalar multiplication on WISPs with and without a dedicated hardware multiplier. The investigations show that when running at a frequency of 6.7 MHz, WISP tags that do not support a hardware multiplier need 8.3 seconds and only 1.6 seconds when a hardware multiplier is supported. The binary-field implementation needs about 2 seconds without support of a hardware multiplier. For the WISP, ECC over prime fields provides best performance when a hardware multiplier is available; binary-field based implementations are recommended otherwise. The use of ECC on WISPs allows the realization of different public-key based protocols in order to provide various cryptographic services such as confidentiality, data integrity, non-repudiation, and authentication.


Author(s):  
Michael Hutter ◽  
Erich Wenger ◽  
Markus Pelnar ◽  
Christian Pendl

In this chapter, the authors explore the feasibility of Elliptic Curve Cryptography (ECC) on Wireless Identification and Sensing Platforms (WISPs). ECC is a public-key based cryptographic primitive that has been widely adopted in embedded systems and Wireless Sensor Networks (WSNs). In order to demonstrate the practicability of ECC on such platforms, the authors make use of the passively powered WISP4.1DL UHF tag from Intel Research Seattle. They implemented ECC over 192-bit prime fields and over 191-bit binary extension fields and performed a Montgomery ladder scalar multiplication on WISPs with and without a dedicated hardware multiplier. The investigations show that when running at a frequency of 6.7 MHz, WISP tags that do not support a hardware multiplier need 8.3 seconds and only 1.6 seconds when a hardware multiplier is supported. The binary-field implementation needs about 2 seconds without support of a hardware multiplier. For the WISP, ECC over prime fields provides best performance when a hardware multiplier is available; binary-field based implementations are recommended otherwise. The use of ECC on WISPs allows the realization of different public-key based protocols in order to provide various cryptographic services such as confidentiality, data integrity, non-repudiation, and authentication.


Author(s):  
Daya Sagar Gupta ◽  
G. P. Biswas

In this chapter, a cloud security mechanism is described in which the computation (addition) of messages securely stored on the cloud is possible. Any user encrypts the secret message using the receiver's public key and stores it. Later on, whenever the stored message is required by an authentic user, he retrieves the encrypted message and decrypts it by using his secret key. However, he can also request the cloud for an addition of encrypted messages. The cloud system only computes the requested addition and sends it to the authentic user; it cannot decrypt the stored encrypted messages on its own. This addition of encrypted messages should be the same as the encryption of the addition of original messages. In this chapter, the authors propose a homomorphic encryption technique in which the above-discussed scenario is possible. The cloud securely computes the addition of the encrypted messages which is ultimately the encryption of the addition of the original messages. The security of the proposed encryption technique depends on the hardness of elliptic curve hard problems.


Sign in / Sign up

Export Citation Format

Share Document