sensing platforms
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 211)

H-INDEX

36
(FIVE YEARS 14)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 610
Author(s):  
Seung-Ho Choi ◽  
Joon-Seok Lee ◽  
Won-Jun Choi ◽  
Jae-Woo Seo ◽  
Seon-Jin Choi

Herein, state-of-the-art research advances in South Korea regarding the development of chemical sensing materials and fully integrated Internet of Things (IoT) sensing platforms were comprehensively reviewed for verifying the applicability of such sensing systems in point-of-care testing (POCT). Various organic/inorganic nanomaterials were synthesized and characterized to understand their fundamental chemical sensing mechanisms upon exposure to target analytes. Moreover, the applicability of nanomaterials integrated with IoT-based signal transducers for the real-time and on-site analysis of chemical species was verified. In this review, we focused on the development of noble nanostructures and signal transduction techniques for use in IoT sensing platforms, and based on their applications, such systems were classified into gas sensors, ion sensors, and biosensors. A future perspective for the development of chemical sensors was discussed for application to next-generation POCT systems that facilitate rapid and multiplexed screening of various analytes.


Author(s):  
Yue-Lin Hsieh ◽  
Xiuli Gao ◽  
Xing Wang ◽  
Fu-Chou Hsiang ◽  
Xinbo Sun ◽  
...  

The application of grafts and biomaterials is a cardinal therapeutic procedure to resolve venous pulsatile tinnitus (PT) caused by temporal bone dehiscence during transtemporal reconstructive surgery. However, the transmission mechanism of venous PT remains unclear, and the sound absorption and insulation properties of different repair materials have not been specified. This study quantifies the vibroacoustic characteristics of PT, sources the major transmission pathway of PT, and verifies the therapeutic effect of different material applications using joint multi-sensing platforms and coupled computational fluid dynamics (CFD) techniques. The in vivo intraoperative acoustic and vibroacoustic characteristics of intrasinus blood flow motion and dehiscent sigmoid plate of a typical venous PT patient were investigated using acoustic and displacement sensors. The acoustical, morphological, and mechanical properties of the dehiscent sigmoid plate, grafts harvested from a cadaveric head, and other biomaterials were acquired using acoustical impedance tubes, micro-CT, scanning electron microscopy, and mercury porosimetry, as appropriate. To analyze the therapeutic effect of our previous reconstructive techniques, coupled CFD simulations were performed using the acquired mechanical properties of biomaterials and patient-specific radiologic data. The peak in vivo intraoperatively gauged, peak simulated vibroacoustic and peak simulated hydroacoustic amplitude of PT prior to sigmoid plate reconstruction were 64.0, 70.4, and 72.8 dB, respectively. After the solidified gelatin sponge–bone wax repair technique, the intraoperative gauged peak amplitude of PT was reduced from 64.0 to 47.3 dB. Among three different reconstructive techniques based on CFD results, the vibroacoustic and hydroacoustic sounds were reduced to 65.9 and 68.6 dB (temporalis–cartilage technique), 63.5 and 63.1 dB (solidified gelatin sponge technique), and 42.4 and 39.2 dB (solidified gelatin sponge–bone wax technique). In conclusion, the current novel biosensing applications and coupled CFD techniques indicate that the sensation of PT correlates with the motion and impact from venous flow, causing vibroacoustic and hydroacoustic sources that transmit via the air-conduction transmission pathway. The transtemporal reconstructive surgical efficacy depends on the established areal density of applied grafts and/or biomaterials, in which the total transmission loss of PT should surpass the amplitude of the measured loudness of PT.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 165
Author(s):  
Sangeeth Pillai ◽  
Akshaya Upadhyay ◽  
Darren Sayson ◽  
Bich Hong Nguyen ◽  
Simon D. Tran

In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.


Author(s):  
Ryo Takahashi ◽  
Wakako Yukita ◽  
Takuya Sasatani ◽  
Tomoyuki Yokota ◽  
Takao Someya ◽  
...  

Energy-efficient and unconstrained wearable sensing platforms are essential for ubiquitous healthcare and activity monitoring applications. This paper presents Twin Meander Coil for wirelessly connecting battery-free on-body sensors to a textile-based reader knitted into clothing. This connection is based on passive inductive telemetry (PIT), wherein an external reader coil collects data from passive sensor coils via the magnetic field. In contrast to standard active sensing techniques, PIT does not require the reader to power up the sensors. Thus, the reader can be fabricated using a lossy conductive thread and industrial knitting machines. Furthermore, the sensors can superimpose information such as ID, touch, rotation, and pressure on its frequency response. However, conventional PIT technology needs a strong coupling between the reader and the sensor, requiring the reader to be small to the same extent as the sensors' size. Thus, applying this technology to body-scale sensing systems is challenging. To enable body-scale readout, Twin Meander Coil enhances the sensitivity of PIT technology by dividing the body-scale meander-shaped reader coils into two parts and integrating them so that they support the readout of each other. To demonstrate its feasibility, we built a prototype with a knitting machine, evaluated its sensing ability, and demonstrated several applications.


Author(s):  
Hemant Ramakant Hegde ◽  
Santhosh Chidangil ◽  
Rajeev K. Sinha

AbstractIn this work, we present the synthesis and surface immobilization of Au nanostars, Au nanocubes and Au nanorods for localized surface plasmon resonance (LSPR)-based refractometric sensing applications. Au nanostructures exhibiting LSPR peak positions in 500–900 nm spectral range were prepared by seed-mediated synthesis method. The refractive index (RI) sensitivity of all these nanostructures in the colloidal solution were measured and the sample exhibiting highest sensitivity in each category were immobilized on the glass substrate. The surface immobilized nanostructures were investigated for RI sensing. Au nanostars having LSPR peak position at 767 nm exhibited highest RI sensitivity of 484 nm/RIU in solution and 318 nm/RIU on the substrate. This study gives an outline for selecting the Au nanostructures for developing plasmonic sensing platforms.


Author(s):  
Robert D. Crapnell ◽  
Elena Bernalte ◽  
Alejandro Garcia-Miranda Ferrari ◽  
Matthew J. Whittingham ◽  
Rhys J. Williams ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Aneeya K. Samantara ◽  
Sudarsan Raj ◽  
Satyajit Ratha
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
pp. 96-116
Author(s):  
Hassan A. Alhazmi ◽  
Waquar Ahsan ◽  
Bharti Mangla ◽  
Shamama Javed ◽  
Mohd. Zaheen Hassan ◽  
...  

Abstract Graphene, owing to its unique chemical structure and extraordinary chemical, electrical, thermal, optical, and mechanical properties, has opened up a new vista of applications, specifically as novel sensing platforms. The last decade has seen an extensive exploration of graphene and graphene-based materials either alone or modified with nanoparticles and polymers for the fabrication of nanoscale biosensors. These biosensors displayed excellent conductivity, high sensitivity, and selectivity, good accuracy, and precision, rapid detection with low detection limits as well as long-term stability. The unmatched properties of graphene and graphene-based materials have been applied for the detection of a number of chemical and biological molecules successfully for the diagnosis of a variety of diseases, pathogens, and biomarkers of the diseases. This review is aimed to cover the fabrication methods, functionalization techniques, and biomedical applications along with the recent advancements in the field of development of graphene-based biosensors. Recent clinical trials and patents as well as market trends and opportunities associated with graphene-based biosensors are also summarized. The application of graphene-based biosensors in the detection of SARS-CoV-2 causing COVID-19 is also reviewed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3360
Author(s):  
Roberta D’Aurelio ◽  
Ibtisam E. Tothill ◽  
Maria Salbini ◽  
Francesca Calò ◽  
Elisabetta Mazzotta ◽  
...  

In this work we have compared two different sensing platforms for the detection of morphine as an example of a low molecular weight target analyte. For this, molecularly imprinted polymer nanoparticles (NanoMIP), synthesized with an affinity towards morphine, were attached to an electrochemical impedance spectroscopy (EIS) and a quartz crystal microbalance (QCM) sensor. Assay design, sensors fabrication, analyte sensitivity and specificity were performed using similar methods. The results showed that the EIS sensor achieved a limit of detection (LOD) of 0.11 ng·mL−1, which is three orders of magnitude lower than the 0.19 µg·mL−1 achieved using the QCM sensor. Both the EIS and the QCM sensors were found to be able to specifically detect morphine in a direct assay format. However, the QCM method required conjugation of gold nanoparticles (AuNPs) to the small analyte (morphine) to amplify the signal and achieve a LOD in the µg·mL−1 range. Conversely, the EIS sensor method was labor-intensive and required extensive data handling and processing, resulting in longer analysis times (~30–40 min). In addition, whereas the QCM enables visualization of the binding events between the target molecule and the sensor in real-time, the EIS method does not allow such a feature and measurements are taken post-binding. The work also highlighted the advantages of using QCM as an automated, rapid and multiplex sensor compared to the much simpler EIS platform used in this work, though, the QCM method will require sample preparation, especially when a sensitive (ng·mL−1) detection of a small analyte is needed.


Sign in / Sign up

Export Citation Format

Share Document