scholarly journals Timing and duration of mare volcanism in the central region of the northern farside of the Moon

2011 ◽  
Vol 63 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Tomokatsu Morota ◽  
◽  
Junichi Haruyama ◽  
Makiko Ohtake ◽  
Tsuneo Matsunaga ◽  
...  

The lunar scene is a continuous panorama of ancient impact physiography. Multi-ringed circular basins and smaller craters scar the Moon’s highlands and provide evidence of a violent early history. Basin formation, the major material-transporting mechanism on the Moon, produces a deep inner depression, one or more benches, a basin rim, and radially lineated ejecta. Study of lunar photographs indicates that, on a relative age scale, subdued basin and crater features are older representations of younger, well-preserved forms. Absolute age dating of returned samples makes it feasible to calibrate this relative age scale. All the larger basins were formed during pre-Nectarian, Nectarian and Imbrian times, i.e. 4.6- 3.9 Ga ago. Following this major sculpturing episode, and during the Imbrian and Eratosthenian times, mare volcanism became the most important mode of deposition of lunar surface materials. Basaltic lavas from deep-seated sources flowed to partially fill the impact basins and cover their peripheral troughs and surrounding lowlands between 3.8 and 3.2 Ga ago. This occurred more frequently on the near side than on the far side, probably because the farside crust is thicker. During the past 1 Ga, i.e. Copemican time, only a small number of craters were formed in both highland and mare rocks. Successes and failures of photogeologists in studying lunar stratigraphy provide the necessary lessons for understanding the geological history of the terrestrial planets. This is particularly true since both Mars and Mercury display many types of features in common with the Moon.


2021 ◽  
Vol 59 (11) ◽  
pp. 1018-1037
Author(s):  
O. L. Kuskov ◽  
E. V. Kronrod ◽  
K. Matsumoto ◽  
V. A. Kronrod

Abstract One of the pivoting problems of the geochemistry and geophysics of the Moon is the structure of its central region, i.e., its core and adjacent transition layer located at the boundary between the solid mantle and liquid or partially molten core. The chemical composition of the mantle and the internal structure of the central region of the Moon were simulated based on the joint inversion of seismic, selenophysical, and geochemical parameters that are not directly interrelated. The solution of the inverse problem is based on the Bayesian approach and the use of the Markov chain Monte Carlo algorithm in combination with the method of Gibbs free energy minimization. The results show that the radius of the Moon’s central region is about 500–550 km. The thickness of the transition layer and the radii of the outer and inner cores relatively weakly depend on the composition models of the bulk silicate Moon with different contents of refractory oxides. The silicate portion of the Moon is enriched in FeO (12–13 wt %, FeO ~ 1.5 × BSE) and depleted in MgO (Mg# 79–81) relative to the bulk composition of the silicate Earth (BSE), which is in conflict with the possibility of the formation of the Moon from the Earth’s primitive mantle and does not find an adequate explanation in the current canonical and non-canonical models of the origin of the Moon. SiO2 concentrations in all zones of the lunar mantle vary insignificantly and amount to 52–53 wt %, and the predominant mineral of the upper mantle is low-Ca orthopyroxene but not olivine. With respect to Al2O3, the lunar mantle is stratified, with a Al2O3 content higher in the lower mantle than in all overlying shells. The partially molten transition layer surrounding the core is about 200–250 km thick. The radii of the solid inner core are within 50–250 km, and the most probable radii of the liquid outer core are ~300–350 km. The physical characteristics of the lunar core are compared with experimental measurements of the density and speed of sound of liquid Fe(Ni)–S–C–Si alloys. If the seismic model of the liquid outer core with VP = 4100 ± 200 m/s (Weber et al., 2011) is reasonably reliable, then this uncertainty range is in the best agreement with the VP values of 3900–4100 m/s of liquid Fe(Ni)–S alloys, with sulfur content up to ~10 wt % and a density of 6200–7000 kg/m3, as well as with the inverted values of density and velocity of the outer core. The VP values of liquid Fe–Ni–C and Fe–N–Si alloys at 5 GPa exceed seismic estimates of the speed of sound of the outer lunar core, which indicates that carbon and silicon can hardly be dominant light elements of the lunar core. The inner Fe(Ni) core (possibly with an insignificant content of light elements: sulfur and carbon) is presumably solid and has a density of 7500–7700 kg/m3. The difference in density between the inner and outer cores Δρ ~ 500–1000 kg/m3 can be explained by the difference in their composition.


2009 ◽  
Vol 36 (21) ◽  
Author(s):  
Tomokatsu Morota ◽  
Junichi Haruyama ◽  
Chikatoshi Honda ◽  
Makiko Ohtake ◽  
Yasuhiro Yokota ◽  
...  

1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 113-115
Author(s):  
D. W. G. Arthur ◽  
E. A. Whitaker

The cartography of the lunar surface can be split into two operations which can be carried on quite independently. The first, which is also the most laborious, is the interpretation of the lunar photographs into the symbolism of the map, with the addition of fine details from telescopic sketches. An example of this kind of work is contained in Johann Krieger'sMond Atlaswhich consists of photographic enlargements in which Krieger has sharpened up the detail to accord with his telescopic impressions. Krieger did not go on either to convert the photographic picture into the line symbolism of a map, or to place this picture on any definite map projection.


Sign in / Sign up

Export Citation Format

Share Document