scholarly journals NUMERICAL PREDICTIONS ON FLOW AND HEAT TRANSFER IN HEAT EXCHANGER TUBE EQUIPPED WITH VARIOUS FLOW ATTACK ANGLES OF INCLINED-WAVY SURFACE

2018 ◽  
Vol 11 ◽  
Author(s):  
Withada Jedsadaratanachai ◽  
Amnart Boonloia
2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Numerical investigations on flow and heat transfer characteristics in the heat exchanger tube with the V-wavy surface are presented. The finite volume method with the SIMPLE algorithm is selected to solve the present problem. The effects of flow attack angles (α = 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, and 60°) and flow directions (V-tip pointing downstream known as “V-Downstream” and V-tip pointing upstream known as “V-Upstream”) for the V-wavy surface on flow and heat transfer patterns are considered for both laminar and turbulent regions. The laminar regime is studied in the range Re = 100–1200, while the turbulent region is investigated in the range Re = 3000–10,000. The mechanisms on flow and heat transfer in the test section are reported. The numerical results reveal that the V-wavy surface changes the flow structure in the test section. The vortex flow is produced by the V-wavy surface. The vortex flow disturbs the thermal boundary layer on the heat transfer surface that is the reason for heat transfer and thermal performance enhancements. The optimum flow attack angles of the V-wavy surface for laminar and turbulent regimes are concluded.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091148 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Flow prediction, heat transfer pattern, and thermo-hydraulic efficiency in a heat exchanger tube fitted with vortex generator are chosen for the present research. The 30° inclined ring is opted to develop the performance of the heat exchanger tube. The effects of inclined ring configuration and placement in the heat exchanger tube on the patterns of flow and heat transfer are investigated. The Reynolds number (at the entry zone of the periodic model) in the range of around 100–2000 (laminar flow region) is discussed. The heat transfer ability, pressure loss, and efficiency of the heat exchanger tube fitted with 30° inclined ring are analyzed with the numerical method (finite volume method). The SIMPLE algorithm of the commercial code is picked for the present study. The simulated results in the heat exchanger tube fitted with 30° inclined ring are offered in patterns of streamlines, temperature contour, and Nusselt number contour. From the preliminary result, it is found that the creation model of the heat exchanger tube fitted with 30° inclined ring has sufficient reliance to measure flow and heat transfer profiles. The installment of the 30° inclined ring in the heat exchanger tube leads to greater heat transfer ability and thermo-hydraulic performance because of the creation of the vortex flow and thermal boundary layer disturbance on the heat exchanger tube surface. The heat transfer ability in the heat exchanger tube fitted with 30° inclined ring is found to be around 1.00–10.56 times above the plain circular tube. In addition, the installation of the 30° inclined ring in the heat exchanger tube gives the maximum thermal enhancement factor around 3.18.


Sign in / Sign up

Export Citation Format

Share Document