Image Processing for Fruit Shape and Texture Feature Extraction - Review

2015 ◽  
Vol 129 (8) ◽  
pp. 30-33
Author(s):  
Trupen Meruliya ◽  
Parth Dhameliya ◽  
Jainish Patel ◽  
Dilav Panchal ◽  
Pooja Kadam ◽  
...  
CCIT Journal ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21-27
Author(s):  
Rogayah Rogayah ◽  
Waliya Rahmawanti ◽  
Nur Azizah

The development of cellular devices makes accessing information in the form of text or images more easier. In line with the growing field of computer vision, various processes in image/image processing continue to increase. Image processing can be done by increasing image quality (image enhancement) and image recovery (image restoration). Feature extraction is divided into three types, namely feature form extraction, texture feature extraction, and color feature extraction. The application of color-based feature extraction methods has been widely used by researchers in the process of classification of various objects. This paper aims to review the technology that can be applied to image processing in a CBIR system with the object of breast milk so that it can measure the quality of breast milk based on its color.


2020 ◽  
Author(s):  
Satya Kumara

Vegetables cultivation using hydroponic is becoming popular now days because of its irrigation and fertilizer efficiency. One type of vegetable which can be cultivated using hydroponic is green mustard (Brassica juncea L.) tosakan variety. This vegetable is harvested in the vegetative phase, approximately aged of 30 days after planting. In addition, during the vegetative phase, this plant requires more nitrogen for growth of vegetative organs. The lack of nitrogen will lead to slow growth and the leaves turn yellow. In this study, non-destructive technology was developed to identify nitrogen status through the image of green mustard leaf by using digital image processing and artificial neural network. The image processing method used was the color moment for color feature extraction, gray level co-occurrence matrix (GLCM) for texture feature extraction and back propagation neural network to identify nitrogen status from the image of leaf. The input image data resulted from acquisition process was RGB color image which was converted to HSV. Prior to the color and texture feature extraction and texture, acquisition image was segmented and cropped to get the leaf image only. Next Step was to conduct training using back propagation neural network with two hidden layer combinations, 20,000 iteration epoch. Accuracy of the test results using those methods was 97.82%. The result indicates those three methods is reliable to identify nitrogen status in the leaf of green mustard.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
G. Jaffino ◽  
J. Prabin Jose

PurposeForensic dentistry is the application of dentistry in legal proceedings that arise from any facts relating to teeth. The ultimate goal of forensic odontology is to identify the individual when there are no other means of identification such as fingerprint, Deoxyribonucleic acid (DNA), iris, hand print and leg print. The purpose of selecting dental record is for the teeth to be able to withstand decomposition, heat degradation up to 1600 °C. Dental patterns are unique for every individual. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic dental images for person identification.Design/methodology/approachTo achieve an accurate identification of individuals, the missing tooth in the radiograph has to be identified before matching of ante-mortem (AM) and post-mortem (PM) radiographs. To identify whether the missing tooth is a molar or premolar, each tooth in the given radiograph has to be classified using a k-nearest neighbor (k-NN) classifier; then, it is matched with the universal tooth numbering system. In order to make exact person identification, this research work is mainly concentrate on contour shape extraction and texture feature extraction for person identification. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic images for individual identification. Then, shape matching of AM and PM images is performed by similarity and distance metric for accurate person identification.FindingsThe experimental results are analyzed for shape and feature extraction of both radiographic and photographic dental images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model, and it is well suited for forensic odontologists to identify a person in mass disaster situations.Research limitations/implicationsForensic odontology is a branch of human identification that uses dental evidence to identify the victims. In mass disaster circumstances, contours and dental patterns are very useful to extract the shape in individual identification.Originality/valueThe experimental results are analyzed both the contour shape extraction and texture feature extraction of both radiographic and photographic images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model and it is well suited for forensic odontologists to identify a person in mass disaster situations. The findings provide theoretical and practical implications for individual identification of both radiographic and photographic images with a view to accurate identification of the person.


Sign in / Sign up

Export Citation Format

Share Document