contour shape
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Maissa Khedher ◽  
Marwa Mejri ◽  
Adel A. Basyouny Shahin ◽  
Jean-Pierre Quiganrd ◽  
Monia Trabelsi ◽  
...  

Abstract Saccular otolith shape and size were analysed for the first time in 120 adult individuals of D. vulgaris collected from two localities, the Bizerte and Ghar El Melh lagoons (north-east Tunisia). The objectives were (1) to examine the specific inter- and intra-individual variation in the otolith shape using elliptical Fourier analysis combined with measures of length (LO), width (WO) and area (AO); (2) to use the otolith shape and size analysis as a phenotypic-based approach to discriminate the stock structure of this species in the two localities to investigate whether they represent two separate stocks to inform on appropriate management procedures; and (3) to test for biases resulting from potential fluctuating asymmetry (FA) in the otolith size on the discrimination of stock structure. Discriminant function analysis performed with the normalized elliptical Fourier descriptors coefficients showed statistically significant differences (P < 0.0001) in the otolith contour shape, i.e. asymmetry, either between the left and right sides or between the same sides (left-left and right-right) within and among individuals of the two localities. Besides, a significant asymmetry (P < 0.05) was found in WO and AO among individuals within the Bizerte locality and in WO only within the Ghar El Melh locality. Moreover, significant FA was observed in the otolith size parameters among individuals of the two localities. This significant asymmetry detected in the otolith shape, as well as in the size due to FA, within and among individuals of D. vulgaris collected from the Bizerte and Ghar El Melh localities confirms that the two stocks could be discriminated from each other and should be managed separately. This asymmetry is discussed in light of the instability of development caused either by environmental stress associated with the variation in water temperature, salinity, depth, feeding conditions and pollutants that have led to abnormalities in the development of individuals or by the presence of poor living conditions for the larvae resulting from unfavourable environments.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
G. Jaffino ◽  
J. Prabin Jose

PurposeForensic dentistry is the application of dentistry in legal proceedings that arise from any facts relating to teeth. The ultimate goal of forensic odontology is to identify the individual when there are no other means of identification such as fingerprint, Deoxyribonucleic acid (DNA), iris, hand print and leg print. The purpose of selecting dental record is for the teeth to be able to withstand decomposition, heat degradation up to 1600 °C. Dental patterns are unique for every individual. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic dental images for person identification.Design/methodology/approachTo achieve an accurate identification of individuals, the missing tooth in the radiograph has to be identified before matching of ante-mortem (AM) and post-mortem (PM) radiographs. To identify whether the missing tooth is a molar or premolar, each tooth in the given radiograph has to be classified using a k-nearest neighbor (k-NN) classifier; then, it is matched with the universal tooth numbering system. In order to make exact person identification, this research work is mainly concentrate on contour shape extraction and texture feature extraction for person identification. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic images for individual identification. Then, shape matching of AM and PM images is performed by similarity and distance metric for accurate person identification.FindingsThe experimental results are analyzed for shape and feature extraction of both radiographic and photographic dental images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model, and it is well suited for forensic odontologists to identify a person in mass disaster situations.Research limitations/implicationsForensic odontology is a branch of human identification that uses dental evidence to identify the victims. In mass disaster circumstances, contours and dental patterns are very useful to extract the shape in individual identification.Originality/valueThe experimental results are analyzed both the contour shape extraction and texture feature extraction of both radiographic and photographic images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model and it is well suited for forensic odontologists to identify a person in mass disaster situations. The findings provide theoretical and practical implications for individual identification of both radiographic and photographic images with a view to accurate identification of the person.


Author(s):  
Spandana Paramkusham ◽  
Jyothirmaye Thotempuddi ◽  
Manjula Sri Rayudu

2021 ◽  
Author(s):  
XueTao Wei ◽  
caixue yue ◽  
DeSheng Hu ◽  
XianLi Liu ◽  
YunPeng Ding ◽  
...  

Abstract The processed surface contour shape is extracted with the finite element simulation software, and the difference value of contour shape change is used as the parameters of balancing surface roughness to construct the infinitesimal element cutting finite element model of supersonic vibration milling in cutting stability domain. The surface roughness trial scheme is designed in the central composite test design method to analyze the surface roughness test result in the response surface methodology. The surface roughness prediction model is established and optimized. Finally, the finite element simulation model and surface roughness prediction model are verified and analyzed through experiment. The research results show that, compared with the experiment results, the maximum error of finite element simulation model and surface roughness prediction model is 30.9% and12.3%, respectively. So, the model in this paper is accurate and will provide the theoretical basis for optimization study of auxiliary milling process of supersonic vibration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ko Sakai ◽  
Yui Sakata ◽  
Ken Kurematsu

AbstractIntegration of multiple properties of an object is a fundamental function of the visual cortex in object recognition. For instance, surface patterns and contour shapes are thought to be crucial characteristics that jointly contribute to recognition. However, the mechanisms of integration and corresponding cortical representations have not been fully clarified. We investigated the integration of surfaces and shapes by examining the tilt after effects (TAEs) evoked by the symmetry of patterns and contours. As symmetry in both pattern and contour evokes TAEs, we can directly measure the interaction between the two. The measured TAEs exhibited mutual transfer between the symmetry of the pattern (SP) and that of the contour shape (SS), i.e., adaptation by SP (SS) evoked TAEs when tested by SS (SP), suggesting the existence of an integrated representation. Next, we examined the interaction between SP and SS when both were simultaneously presented in adaptation. Congruent adaptors wherein their symmetry axes aligned evoked compressive interaction, whereas incongruent adaptors wherein the axes of SP and SS tilted to the opposite directions evoked subtractive interaction. These results suggest the existence of a cortical representation that integrates the properties of the surface and shape with suppressive interactions, which can provide crucial insights into the formation of object representation as well as the integration of visual information in the cortex.


2021 ◽  
Vol 336 ◽  
pp. 06026
Author(s):  
Lianhua Hu ◽  
Chengyi Xiang ◽  
Feng Zhang

Based on the precise sheepskin contour extracted by computer vision technology in the previous research of the team, this paper proposes the shape description technology based on the structure contour to extract the local features of the sheepskin, such as the head and hooves and the waste edge, which is the basis for the automatic edge removal of the sheepskin in the future. The algorithm uses Angle and position relation to segment the precise contour track of raw sheepskin into graph elements, and then uses geometric parameter shape description operator to describe and extract the edges that need to be removed, so as to obtain the starting point and end point of each local contour that needs to be removed. In this paper, the principle and implementation steps of this method are introduced in detail, and the experimental simulation verification shows that the extraction effect is good, which can meet the requirements of subsequent industrial production of automatic sheepskin cutting.


Author(s):  
Jonathan Barnes ◽  
Hansjörg Mixdorff ◽  
Oliver Niebuhr

This chapter reviews commonly recurring tendencies in the phonetic realization of tones, both in intonation and in lexical tone systems. It discusses local interactions between tonal targets, such as tonal coarticulation, dissimilatory H-raising, and rightward target displacement. Non-coarticulatory patterns include globally oriented patterns such as declination, look-ahead upstep, and final lowering as well as interactions between tone and the segmental skeleton, such as segmental anchoring, timing adjustments based on syllable structure or segmental features, and patterns of duration-driven truncation and compression of tone melodies. The chapter also considers morphosyntactically, pragmatically, and metalinguistically conditioned hyperarticulation effects arising from prominence or the Lombard effect. Lastly, it discusses issues relating to contour shape, such as the convexity or concavity of f0 movements, plateau versus sharp peak shapes for f0 maxima, and the propensity for L tones to be accompanied by a falling or dipping f0.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Rendong Tang ◽  
Qianling Song ◽  
Ying Li ◽  
Rui Zhang ◽  
Xingya Cai ◽  
...  

Neurons in primate V4 exhibit various types of selectivity for contour shapes, including curves, angles, and simple shapes. How are these neurons organized in V4 remains unclear. Using intrinsic signal optical imaging and two-photon calcium imaging, we observed submillimeter functional domains in V4 that contained neurons preferring curved contours over rectilinear ones. These curvature domains had similar sizes and response amplitudes as orientation domains but tended to separate from these regions. Within the curvature domains, neurons that preferred circles or curve orientations clustered further into finer scale subdomains. Nevertheless, individual neurons also had a wide range of contour selectivity, and neighboring neurons exhibited a substantial diversity in shape tuning besides their common shape preferences. In strong contrast to V4, V1 and V2 did not have such contour-shape-related domains. These findings highlight the importance and complexity of curvature processing in visual object recognition and the key functional role of V4 in this process.


2020 ◽  
Vol 2020 (3) ◽  
pp. 12-17
Author(s):  
Yu.A. Kvasha ◽  
◽  
N.A. Zinevych ◽  

This work is concerned with the development of approaches to the optimal aerodynamic design of centrifugal compressor wheels, which is due to the use of centrifugal stages in compressors of modern aircraft gas turbine engines and power plants. The aim of this work is a computational study of the effect of the meridional contour shape of a centrifugal compressor wheel on its power characteristics. The basic method is a numerical simulation of 3D turbulent gas flows in centrifugal wheels on the basis of the complete averaged Navier¬–Stokes equations and a two-parameter turbulence model. The computational study features: varying the shape of the hub and tip part of the meridional contour over a wide range, formulating quality criteria as the mean integral values of the wheel power characteristics over the operating range of the air flow rate through the wheel, and a systematic scan of the independent variable range at points that form a uniformly distributed sequence. As a result of multiparameter calculations, it was shown that in the case of a flow without separation in the blade channels of a wheel with a given starting shape of the meridional contour, varying that shape has an insignificant effect on the wheel power characteristics. It is pointed out that in similar cases it seems to be advisable to aerodynamically improve centrifugal wheels by varying the shape of their blades in the circumferential direction rather than in the meridional plane. This conclusion was made using rather a “coarse” computational grid, which, however, retains the sensitivity of the computed results to a variation in the centrifugal wheel geometry. On the whole, this work clarifies ways of further aerodynamic improvement of centrifugal compressor impellers in cases where the starting centrifugal wheel is a well-designed wheel with a flow without separation in the blade channels. The results obtained may be used in the aerodynamic optimization of centrifugal stages of aircraft gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document