scholarly journals Accelerated Bayesian Optimization for Deep Learning

Author(s):  
Ayahiko Niimi ◽  
Kousuke Sakamoto
2021 ◽  
Vol 23 (2) ◽  
pp. 359-370
Author(s):  
Michał Matuszczak ◽  
Mateusz Żbikowski ◽  
Andrzej Teodorczyk

The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.


2020 ◽  
Author(s):  
Ryosuke Kojima ◽  
Shoichi Ishida ◽  
Masateru Ohta ◽  
Hiroaki Iwata ◽  
Teruki Honma ◽  
...  

<div>Deep learning is developing as an important technology to perform various tasks in cheminformatics. In particular, graph convolutional neural networks (GCNs) have been reported to perform well in many types of prediction tasks related to molecules. Although GCN exhibits considerable potential in various applications, appropriate utilization of this resource for obtaining reasonable and reliable prediction results requires thorough understanding of GCN and programming. To leverage the power of GCN to benefit various users from chemists to cheminformaticians, an open-source GCN tool, kGCN, is introduced. To support the users with various levels of programming skills, kGCN includes three interfaces: a graphical user interface (GUI) employing KNIME for users with limited programming skills such as chemists, as well as command-line and Python library interfaces for users with advanced programming skills such as cheminformaticians. To support the three steps required for building a prediction model, i.e., pre-processing, model tuning, and interpretation of results, kGCN includes functions of typical pre-processing, Bayesian optimization for automatic model tuning, and visualization of the atomic contribution to prediction for interpretation of results. kGCN supports three types of approaches, single-task, multi-task, and multimodal predictions. The prediction of compound-protein interaction for four matrixmetalloproteases, MMP-3, -9, -12 and -13, in the inhibition assays is performed as a representative case study using kGCN. Additionally, kGCN provides the visualization of atomic contributions to the prediction. Such visualization is useful for the validation of the prediction models and the design of molecules based on the prediction model, realizing “explainable AI” for understanding the factors affecting AI prediction. kGCN is available at https://github.com/clinfo/kGCN.</div>


2019 ◽  
Vol 58 (01) ◽  
pp. 031-041 ◽  
Author(s):  
Sara Rabhi ◽  
Jérémie Jakubowicz ◽  
Marie-Helene Metzger

Objective The objective of this article was to compare the performances of health care-associated infection (HAI) detection between deep learning and conventional machine learning (ML) methods in French medical reports. Methods The corpus consisted in different types of medical reports (discharge summaries, surgery reports, consultation reports, etc.). A total of 1,531 medical text documents were extracted and deidentified in three French university hospitals. Each of them was labeled as presence (1) or absence (0) of HAI. We started by normalizing the records using a list of preprocessing techniques. We calculated an overall performance metric, the F1 Score, to compare a deep learning method (convolutional neural network [CNN]) with the most popular conventional ML models (Bernoulli and multi-naïve Bayes, k-nearest neighbors, logistic regression, random forests, extra-trees, gradient boosting, support vector machines). We applied the hyperparameter Bayesian optimization for each model based on its HAI identification performances. We included the set of text representation as an additional hyperparameter for each model, using four different text representations (bag of words, term frequency–inverse document frequency, word2vec, and Glove). Results CNN outperforms all other conventional ML algorithms for HAI classification. The best F1 Score of 97.7% ± 3.6% and best area under the curve score of 99.8% ± 0.41% were achieved when CNN was directly applied to the processed clinical notes without a pretrained word2vec embedding. Through receiver operating characteristic curve analysis, we could achieve a good balance between false notifications (with a specificity equal to 0.937) and system detection capability (with a sensitivity equal to 0.962) using the Youden's index reference. Conclusions The main drawback of CNNs is their opacity. To address this issue, we investigated CNN inner layers' activation values to visualize the most meaningful phrases in a document. This method could be used to build a phrase-based medical assistant algorithm to help the infection control practitioner to select relevant medical records. Our study demonstrated that deep learning approach outperforms other classification learning algorithms for automatically identifying HAIs in medical reports.


2020 ◽  
Vol 76 (9) ◽  
pp. 7315-7332 ◽  
Author(s):  
Yukihiro Nomura ◽  
Issei Sato ◽  
Toshihiro Hanawa ◽  
Shouhei Hanaoka ◽  
Takahiro Nakao ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 1940-1957
Author(s):  
Marwa Ismael Obayya ◽  
Mohammed El-Ghandour ◽  
Fadwa Alrowais

2020 ◽  
Vol 60 ◽  
pp. 102237 ◽  
Author(s):  
Jun Ma ◽  
Yuexiong Ding ◽  
Jack C.P. Cheng ◽  
Feifeng Jiang ◽  
Vincent J.L. Gan ◽  
...  

2020 ◽  
Author(s):  
Ryosuke Kojima ◽  
Shoichi Ishida ◽  
Masateru Ohta ◽  
Hiroaki Iwata ◽  
Teruki Honma ◽  
...  

<div>Deep learning is developing as an important technology to perform various tasks in cheminformatics. In particular, graph convolutional neural networks (GCNs) have been reported to perform well in many types of prediction tasks related to molecules. Although GCN exhibits considerable potential in various applications, appropriate utilization of this resource for obtaining reasonable and reliable prediction results requires thorough understanding of GCN and programming. To leverage the power of GCN to benefit various users from chemists to cheminformaticians, an open-source GCN tool, kGCN, is introduced. To support the users with various levels of programming skills, kGCN includes three interfaces: a graphical user interface (GUI) employing KNIME for users with limited programming skills such as chemists, as well as command-line and Python library interfaces for users with advanced programming skills such as cheminformaticians. To support the three steps required for building a prediction model, i.e., pre-processing, model tuning, and interpretation of results, kGCN includes functions of typical pre-processing, Bayesian optimization for automatic model tuning, and visualization of the atomic contribution to prediction for interpretation of results. kGCN supports three types of approaches, single-task, multi-task, and multimodal predictions. The prediction of compound-protein interaction for four matrixmetalloproteases, MMP-3, -9, -12 and -13, in the inhibition assays is performed as a representative case study using kGCN. Additionally, kGCN provides the visualization of atomic contributions to the prediction. Such visualization is useful for the validation of the prediction models and the design of molecules based on the prediction model, realizing “explainable AI” for understanding the factors affecting AI prediction. kGCN is available at https://github.com/clinfo/kGCN.</div>


Sign in / Sign up

Export Citation Format

Share Document