Development of training environment for deep learning with medical images on supercomputer system based on asynchronous parallel Bayesian optimization

2020 ◽  
Vol 76 (9) ◽  
pp. 7315-7332 ◽  
Author(s):  
Yukihiro Nomura ◽  
Issei Sato ◽  
Toshihiro Hanawa ◽  
Shouhei Hanaoka ◽  
Takahiro Nakao ◽  
...  
2021 ◽  
Vol 26 (1) ◽  
pp. 93-102
Author(s):  
Yue Zhang ◽  
Shijie Liu ◽  
Chunlai Li ◽  
Jianyu Wang

2019 ◽  
pp. 225-237
Author(s):  
Behnaz Abdollahi ◽  
Ayman El-Baz ◽  
Hermann B. Frieboes

2020 ◽  
Vol 10 (12) ◽  
pp. 4282
Author(s):  
Ghada Zamzmi ◽  
Sivaramakrishnan Rajaraman ◽  
Sameer Antani

Medical images are acquired at different resolutions based on clinical goals or available technology. In general, however, high-resolution images with fine structural details are preferred for visual task analysis. Recognizing this significance, several deep learning networks have been proposed to enhance medical images for reliable automated interpretation. These deep networks are often computationally complex and require a massive number of parameters, which restrict them to highly capable computing platforms with large memory banks. In this paper, we propose an efficient deep learning approach, called Hydra, which simultaneously reduces computational complexity and improves performance. The Hydra consists of a trunk and several computing heads. The trunk is a super-resolution model that learns the mapping from low-resolution to high-resolution images. It has a simple architecture that is trained using multiple scales at once to minimize a proposed learning-loss function. We also propose to append multiple task-specific heads to the trained Hydra trunk for simultaneous learning of multiple visual tasks in medical images. The Hydra is evaluated on publicly available chest X-ray image collections to perform image enhancement, lung segmentation, and abnormality classification. Our experimental results support our claims and demonstrate that the proposed approach can improve the performance of super-resolution and visual task analysis in medical images at a remarkably reduced computational cost.


2021 ◽  
Author(s):  
Nuria Pereira Espasandín ◽  
David Maseda Neira ◽  
Diana Marcela Noriega Cobo ◽  
Iago Iglesias Corrás ◽  
Alejandro Pazos ◽  
...  

2021 ◽  
Vol 23 (2) ◽  
pp. 359-370
Author(s):  
Michał Matuszczak ◽  
Mateusz Żbikowski ◽  
Andrzej Teodorczyk

The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.


Sign in / Sign up

Export Citation Format

Share Document