scholarly journals Fabric Defect Detection based on Improved Object as Point

Author(s):  
Yuan He ◽  
Xin-Yue Huang ◽  
Francis Eng Hock Tay

In the field of fabric manufacturing, many factories still utilise the traditional manual detection method. It requires a lot of labour, resulting in high error rates and low efficiency. In this paper, we represent a realtime automated detection method based on object as point. This work makes three attributions. First, we build a fabric defects database and augment the data to training the intelligence model. Second, we provide a real-time fabric defects detection algorithm, which have potential to be applied in manufacturing. Third, we figure out CenterNet with soft NMS will improved the performance in fabric defect detection area, which is considered an NMS-free algorithm. Experiment results indicated that our lightweight network based method can effectively and efficiently detect five different fabric defects.

2020 ◽  
Vol 57 (16) ◽  
pp. 161001
Author(s):  
周君 Zhou Jun ◽  
景军锋 Jing Junfeng ◽  
张缓缓 Zhang Huanhuan ◽  
王震 Wang Zhen ◽  
黄汉林 Huang Hanlin

2020 ◽  
Vol 2 (4) ◽  
pp. 189-196
Author(s):  
Shuxuan Zhao ◽  
Li Yin ◽  
Jie Zhang ◽  
Junliang Wang ◽  
Ray Zhong

2015 ◽  
Vol 27 (5) ◽  
pp. 738-750 ◽  
Author(s):  
Zhoufeng Liu ◽  
Chunlei Li ◽  
Quanjun Zhao ◽  
Liang Liao ◽  
Yan Dong

Purpose – Fabric defect detection plays an important role in textile quality control. The purpose of this paper is to propose a fabric defect detection algorithm via context-based local texture saliency analysis. Design/methodology/approach – In the proposed algorithm, a target image is first divided into blocks, then the Local Binary Pattern (LBP) technique is used to extract the texture features of blocks. Second, for a given image block, several other blocks are randomly chosen for calculating the LBP contrast between a given block and the randomly chosen blocks. Based on the obtained contrast information, a saliency map is produced. Finally, saliency map is segmented by using an optimal threshold, which is obtained by an iterative approach. Findings – The experimental results show that the proposed algorithm, integrating local texture features and global image texture information, can detect texture defects effectively. Originality/value – In this paper, a novel fabric defect detection algorithm via context-based local texture saliency analysis is proposed.


2020 ◽  
Vol 10 (23) ◽  
pp. 8434
Author(s):  
Peiran Peng ◽  
Ying Wang ◽  
Can Hao ◽  
Zhizhong Zhu ◽  
Tong Liu ◽  
...  

Fabric defect detection is very important in the textile quality process. Current deep learning algorithms are not effective in detecting tiny and extreme aspect ratio fabric defects. In this paper, we proposed a strong detection method, Priori Anchor Convolutional Neural Network (PRAN-Net), for fabric defect detection to improve the detection and location accuracy of fabric defects and decrease the inspection time. First, we used Feature Pyramid Network (FPN) by selected multi-scale feature maps to reserve more detailed information of tiny defects. Secondly, we proposed a trick to generate sparse priori anchors based on fabric defects ground truth boxes instead of fixed anchors to locate extreme defects more accurately and efficiently. Finally, a classification network is used to classify and refine the position of the fabric defects. The method was validated on two self-made fabric datasets. Experimental results indicate that our method significantly improved the accuracy and efficiency of detecting fabric defects and is more suitable to the automatic fabric defect detection.


Sign in / Sign up

Export Citation Format

Share Document