Non-Linear Thermal Aware Optimization of Data Center Equipment Upgrading

Author(s):  
Jayantha Siriwardana ◽  
Saliya Jayasekara ◽  
Saman K. Halgamuge
Keyword(s):  
2021 ◽  
Author(s):  
Shivani Dhok ◽  
Prasanna Raut ◽  
Prabhat Kumar Sharma ◽  
Keshav Singh ◽  
Chih-Peng Li

A reconfigurable intelligent surface (RIS)-assisted wireless communication system with non-linear energy harvesting (EH) and ultra-reliable low-latency constraints is considered for its possible applications in industrial automation. A distant data-center (DC) communicates with the multiple destination machines with the help of a full-duplex (FD) server machine (SM) and RIS. Assuming the deficiency of enough transmission power at the FD-SM, the SM is considered in the near vicinity of the destinations in the industry to forward the data received from the distant DC. The reception at SM is assisted by the RIS and a non-linear hybrid power-time splitting (PTS) based EH receiver architecture is adopted to extend the lifespan of SM, thus increasing network lifetime. The scheduling of multiple destinations is done by SM based on the considered selection criteria namely, random (RND) scheduling, absolute (ABS) channel-power-based (CPB) scheduling and normalized (NRM) CPB scheduling. The end-to-end performance of the considered FD RIS-assisted network is analyzed, and the expressions for the block error rate (BLER) for all scheduling schemes are derived. Moreover, the effects of number of RIS elements, packet size, channel uses on the system performance are analyzed for the considered ultra-reliable and low-latency communication (URLLC) network. The scheduling fairness of all the scheduling schemes is also analyzed to study the performance-fairness trade-off. The derived analytical results are verified through Monte-Carlo simulations.


2021 ◽  
Author(s):  
Shivani Dhok ◽  
Prasanna Raut ◽  
Prabhat Kumar Sharma ◽  
Keshav Singh ◽  
Chih-Peng Li

A reconfigurable intelligent surface (RIS)-assisted wireless communication system with non-linear energy harvesting (EH) and ultra-reliable low-latency constraints is considered for its possible applications in industrial automation. A distant data-center (DC) communicates with the multiple destination machines with the help of a full-duplex (FD) server machine (SM) and RIS. Assuming the deficiency of enough transmission power at the FD-SM, the SM is considered in the near vicinity of the destinations in the industry to forward the data received from the distant DC. The reception at SM is assisted by the RIS and a non-linear hybrid power-time splitting (PTS) based EH receiver architecture is adopted to extend the lifespan of SM, thus increasing network lifetime. The scheduling of multiple destinations is done by SM based on the considered selection criteria namely, random (RND) scheduling, absolute (ABS) channel-power-based (CPB) scheduling and normalized (NRM) CPB scheduling. The end-to-end performance of the considered FD RIS-assisted network is analyzed, and the expressions for the block error rate (BLER) for all scheduling schemes are derived. Moreover, the effects of number of RIS elements, packet size, channel uses on the system performance are analyzed for the considered ultra-reliable and low-latency communication (URLLC) network. The scheduling fairness of all the scheduling schemes is also analyzed to study the performance-fairness trade-off. The derived analytical results are verified through Monte-Carlo simulations.


1967 ◽  
Vol 28 ◽  
pp. 105-176
Author(s):  
Robert F. Christy

(Ed. note: The custom in these Symposia has been to have a summary-introductory presentation which lasts about 1 to 1.5 hours, during which discussion from the floor is minor and usually directed at technical clarification. The remainder of the session is then devoted to discussion of the whole subject, oriented around the summary-introduction. The preceding session, I-A, at Nice, followed this pattern. Christy suggested that we might experiment in his presentation with a much more informal approach, allowing considerable discussion of the points raised in the summary-introduction during its presentation, with perhaps the entire morning spent in this way, reserving the afternoon session for discussion only. At Varenna, in the Fourth Symposium, several of the summaryintroductory papers presented from the astronomical viewpoint had been so full of concepts unfamiliar to a number of the aerodynamicists-physicists present, that a major part of the following discussion session had been devoted to simply clarifying concepts and then repeating a considerable amount of what had been summarized. So, always looking for alternatives which help to increase the understanding between the different disciplines by introducing clarification of concept as expeditiously as possible, we tried Christy's suggestion. Thus you will find the pattern of the following different from that in session I-A. I am much indebted to Christy for extensive collaboration in editing the resulting combined presentation and discussion. As always, however, I have taken upon myself the responsibility for the final editing, and so all shortcomings are on my head.)


Optimization ◽  
1975 ◽  
Vol 6 (4) ◽  
pp. 549-559
Author(s):  
L. Gerencsér

1979 ◽  
Author(s):  
George W. Howe ◽  
James H. Dalton ◽  
Maurice J. Elias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document