packet size
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 127 (14) ◽  
Author(s):  
Martín Drechsler ◽  
Sebastian Wolf ◽  
Christian T. Schmiegelow ◽  
Ferdinand Schmidt-Kaler
Keyword(s):  

2021 ◽  
Author(s):  
Chonnikan Sangmek ◽  
Nathaphon Boonnam

Abstract The fog-cloud computing traffic model overviews working elements in forming fog-cloud computing with three main layers: Ubiquitous Sensor Networks, Fog Computing, and Cloud Computing. We present a possible method of data transmission that focuses on either measuring or manipulating or both in the system divided into 7 USNs and using latency measurement to demonstrate transmission efficiency. This paper considers the latency test into four prominent cases: internet connection, traffic model, number of devices, and packet by equipment used for testing consisting of microcontroller board, sensor, actuator, and uses fog node two types: pocket Wi-Fi and router. In the latency test, we found that the factor causing the higher latency in the system was the packet size. The main factor consists of the different characteristics of working, fog nodes, and the number of connected devices. Therefore, the packet has correlated directly with the latency depending on the size of the packet increases. The resulting latency is the main factor affecting the work of the system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Neha Jain ◽  
Ashish Payal ◽  
Aarti Jain

Purpose The purpose of this study is to calculate the effect of different packet sizes 256, 512, 1,024 and 2,048 bytes on a large-scale hybrid network and analysis and identifies which routing protocol is best for application throughput, application delay and network link parameters for different packet sizes. As the routing protocol is used to select the optimal path to transfer data packets from source to destination. It is always important to consider the performance of the routing protocol before the final network configuration. From the literature, it has been observed that RIP (Routing Information Protocol) and OSPF (Open Shortest Path First) are the most popular routing protocols, and it has always been a challenge to select between these routing protocols, especially for hybrid networks. The efficiency of routing protocol mainly depends on resulting throughput and delay. Also, it has been observed that data packet size also plays an essential role in determining the efficiency of routing protocol. Design/methodology/approach To analyse the effect of different packet sizes using two routing protocols, routing information protocol (RIP) and open shortest path first (OSPF) on the hybrid network, require detailed planning. Designing the network for simulate and then finally analysing the results requires proper study. Each stage needs to be understood well for work accomplishment. Thus, the network’s simulation and evaluation require implementing the proposed work step by step, saving time and cost. Here, the proposed work methodology is defined in six steps or stages. Findings The simulation results show that both routing protocols – RIP and OSPF are equally good in terms of network throughput for all different packet sizes. However, OSPF performs better in terms of network delay than RIP routing protocol in different packet size scenarios. Research limitations/implications In this paper, a fixed network of 125 objects and only RIP and OSPF routing protocol have been used for analysis. Therefore, in the future, a comparison of different network sizes can be considered by increasing or decreasing the number of objects in the proposed network. Furthermore, the other routing protocols can be used for performance evaluation on the same proposed network. Originality/value The analysis can be conducted by simulation of the network, enabling us to develop a network environment without restricting the selection of parameters as it minimizes cost, network deployment overhead, human resources, etc. The results are analysed, calculated and compared for each packet size on different routing protocol networks individually and the conclusion is made.


2021 ◽  
Author(s):  
Yuechen Chen ◽  
Shanshan Liu ◽  
Fabrizio Lombardi ◽  
Ahmed Louri

Approximation is an effective technique for reducing power consumption and latency of on-chip communication in many computing applications. However, existing approximation techniques either achieve modest improvements in these metrics or require retraining after approximation, such when convolutional neural networks (CNNs) are employed. Since classifying many images introduces intensive on-chip communication, reductions in both network latency and power consumption are highly desired. In this paper, we propose an approximate communication technique (ACT) to improve the efficiency of on-chip communications for image classification applications. The proposed technique exploits the error-tolerance of the image classification process to reduce power consumption and latency of on-chip communications, resulting in better overall performance for image classification computation. This is achieved by incorporating novel quality control and data approximation mechanisms that reduce the packet size. In particular, the proposed quality control mechanisms identify the error-resilient variables and automatically adjust the error thresholds of the variables based on the image classification accuracy. The proposed data approximation mechanisms significantly reduce packet size when the variables are transmitted. The proposed technique reduces the number of flits in each data packet as well as the on-chip communication, while maintaining an excellent image classification accuracy. The cycle-accurate simulation results show that ACT achieves 23% in network latency reduction and 24% in dynamic power reduction compared to the existing approximate communication technique with less than 0.99% classification accuracy loss.


2021 ◽  
Author(s):  
Yuechen Chen ◽  
Shanshan Liu ◽  
Fabrizio Lombardi ◽  
Ahmed Louri

Approximation is an effective technique for reducing power consumption and latency of on-chip communication in many computing applications. However, existing approximation techniques either achieve modest improvements in these metrics or require retraining after approximation, such when convolutional neural networks (CNNs) are employed. Since classifying many images introduces intensive on-chip communication, reductions in both network latency and power consumption are highly desired. In this paper, we propose an approximate communication technique (ACT) to improve the efficiency of on-chip communications for image classification applications. The proposed technique exploits the error-tolerance of the image classification process to reduce power consumption and latency of on-chip communications, resulting in better overall performance for image classification computation. This is achieved by incorporating novel quality control and data approximation mechanisms that reduce the packet size. In particular, the proposed quality control mechanisms identify the error-resilient variables and automatically adjust the error thresholds of the variables based on the image classification accuracy. The proposed data approximation mechanisms significantly reduce packet size when the variables are transmitted. The proposed technique reduces the number of flits in each data packet as well as the on-chip communication, while maintaining an excellent image classification accuracy. The cycle-accurate simulation results show that ACT achieves 23% in network latency reduction and 24% in dynamic power reduction compared to the existing approximate communication technique with less than 0.99% classification accuracy loss.


2021 ◽  
Author(s):  
Shivani Dhok ◽  
Prasanna Raut ◽  
Prabhat Kumar Sharma ◽  
Keshav Singh ◽  
Chih-Peng Li

A reconfigurable intelligent surface (RIS)-assisted wireless communication system with non-linear energy harvesting (EH) and ultra-reliable low-latency constraints is considered for its possible applications in industrial automation. A distant data-center (DC) communicates with the multiple destination machines with the help of a full-duplex (FD) server machine (SM) and RIS. Assuming the deficiency of enough transmission power at the FD-SM, the SM is considered in the near vicinity of the destinations in the industry to forward the data received from the distant DC. The reception at SM is assisted by the RIS and a non-linear hybrid power-time splitting (PTS) based EH receiver architecture is adopted to extend the lifespan of SM, thus increasing network lifetime. The scheduling of multiple destinations is done by SM based on the considered selection criteria namely, random (RND) scheduling, absolute (ABS) channel-power-based (CPB) scheduling and normalized (NRM) CPB scheduling. The end-to-end performance of the considered FD RIS-assisted network is analyzed, and the expressions for the block error rate (BLER) for all scheduling schemes are derived. Moreover, the effects of number of RIS elements, packet size, channel uses on the system performance are analyzed for the considered ultra-reliable and low-latency communication (URLLC) network. The scheduling fairness of all the scheduling schemes is also analyzed to study the performance-fairness trade-off. The derived analytical results are verified through Monte-Carlo simulations.


2021 ◽  
Author(s):  
Shivani Dhok ◽  
Prasanna Raut ◽  
Prabhat Kumar Sharma ◽  
Keshav Singh ◽  
Chih-Peng Li

A reconfigurable intelligent surface (RIS)-assisted wireless communication system with non-linear energy harvesting (EH) and ultra-reliable low-latency constraints is considered for its possible applications in industrial automation. A distant data-center (DC) communicates with the multiple destination machines with the help of a full-duplex (FD) server machine (SM) and RIS. Assuming the deficiency of enough transmission power at the FD-SM, the SM is considered in the near vicinity of the destinations in the industry to forward the data received from the distant DC. The reception at SM is assisted by the RIS and a non-linear hybrid power-time splitting (PTS) based EH receiver architecture is adopted to extend the lifespan of SM, thus increasing network lifetime. The scheduling of multiple destinations is done by SM based on the considered selection criteria namely, random (RND) scheduling, absolute (ABS) channel-power-based (CPB) scheduling and normalized (NRM) CPB scheduling. The end-to-end performance of the considered FD RIS-assisted network is analyzed, and the expressions for the block error rate (BLER) for all scheduling schemes are derived. Moreover, the effects of number of RIS elements, packet size, channel uses on the system performance are analyzed for the considered ultra-reliable and low-latency communication (URLLC) network. The scheduling fairness of all the scheduling schemes is also analyzed to study the performance-fairness trade-off. The derived analytical results are verified through Monte-Carlo simulations.


2021 ◽  
Vol 25 (1) ◽  
pp. 3-10
Author(s):  
Vishakha Tyagi ◽  
◽  
Sindhu Hak Gupta ◽  
Monica Kaushik ◽  
◽  
...  

Movement and posture change of human body plays a crucial role in energy consumption while data transmission between strategically deployed nodes in wireless body area networks (WBANs). The majority of energy is used in transmission rather than processing of the data. Nodes within body are there for long time and need to be energy efficient so that the network lifetime is increased. In this paper, we propose an energy efficient data transmission for multi-hop network that uses particle swarm optimization (PSO) for optimizing the parameters on which energy consumption relies. An energy efficient data transmission and reception takes place by altering the parameters like node to node distance and packet size of data. The obtained results show a significant reduction of energy consumed by reducing the packet size and keeping the node-to-sink distance a constant value. The total energy consumed per hop per bit length of data packet Emh/L shows 75% optimization. The energy consumed in data transmission per bit length of data E tx /L and the energy consumed for data received per bit length of data packet E rx /L is optimized by approximately 70% and 50% respectively for hope count 2 to 5.


Underwater Acoustic Sensor Networks offer very promising solutions to monitor the aqueous environments. Due to the distinctive characteristics of UASNs, it is very challenging to design a routing protocol that can achieve maximum data delivery ratio in the network. The main challenge is the communication medium (acoustic links) that is subject to temporary attenuation and high bit error rate (BER), which limits the throughput efficiency of the Network. Besides this, another major issue is the continuous movement of nodes due to water currents and the availability of limited resources. Due to nodes mobility distance among sensor nodes and consequently, BER varies, which have a direct impact on packet size, hence, leads to high packet loss and low data delivery ratio. To achieve a high data delivery ratio, the selection of optimal packet size is of utmost importance. Consequently, the selection of next-hop forwarding node based on optimal packet size is needed. Therefore, in this paper, we propose an adaptive routing protocol named Adaptive Packet Size Selection Based Routing (APSSR) Protocol for UASNs. APSSR determines the optimal packet size adaptively based on both varying distances between sensor nodes and BER and selects the next hop based on optimal packet size and BER. The simulation results show greater network performance in terms of Network Lifetime, Data Reception Ratio at Sink node, Average Network Delay, Packet Reception Ratio, and Packets Drop Ratio


Author(s):  
Geethanjali N ◽  
◽  
Dr. Rekha K.R ◽  

The engineering for on chip network configuration utilizing dynamic reconfiguration is an answer for Communication Interfaces, Chip cost, Quality of Service, ensure adaptability of the organization. The proposed engineering powerfully arrange itself concerning Hardware Modules like switches, Switch based packet , information to a packet size with changing the correspondence situation and its prerequisites on run time. The NOC Architecture assumes urgent part while planning correspondence frameworks intended for SOC. The NOC engineering be better over traditional transport, mutual transport plan , cross bar interconnection design intended for on chip organizations. In a greater part of the NO C engineering contains lattice, torus or different geographies to plan solid switch. In any case, the greater part of the plans are neglects to advance a Quality of Service, blocking issues, cost, Chip as well as mostly plan throughput, region transparency with inactivity. Proposed plan we are planning a reconfigurable switch for network on chip plan that improve the correspondence performance. The proposed configuration dodges the restrictions of transport based interconnection plans which are frequently applied in part progressively reconfigurable FPGA plans. . With the assistance of this switch plan we can accomplish low inactivity and high information throughput.


Sign in / Sign up

Export Citation Format

Share Document