scholarly journals Single-nucleotide polymorphisms in <i>FLT3</i>, <i>NLRP5</i>, and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep

2021 ◽  
Vol 64 (2) ◽  
pp. 475-486
Author(s):  
Si Chen ◽  
Lin Tao ◽  
Xiaoyun He ◽  
Ran Di ◽  
Xiangyu Wang ◽  
...  

Abstract. Previous studies have indicated that FLT3, NLRP5, and TGIF1 play a pivotal role in sheep fecundity. Nevertheless, little is known about the association of the polymorphisms of these genes with litter size (LS). In this study, the selected single-nucleotide polymorphisms (SNPs) were genotyped using a Sequenom MassARRAY® platform, and the distribution of different genotypes of the SNPs in the seven sheep breeds (Small-tailed Han, Hu, Cele Black, Suffolk, Tan, Prairie Tibetan, and Sunite sheep) were analyzed. The reliability of the estimated allele frequency for all seven SNPs was at least 0.9545. Given the association of the TGIF1 g.37866222C > T polymorphism with LS in Small-tailed Han sheep (p<0.05), fecundity differences might be caused by the change in amino acid from proline (Pro) to serine (Ser), which has an impact on secondary, tertiary protein structures with concomitant TGIF1 functionality changes. The FLT3 rs421947730 locus has a great effect on the LS (p<0.05), indicating that the locus of FLT3 in synergy with KILTG is likely to facilitate ovarian follicle maturation and ovulation. Moreover, NLRP5 rs426897754 is associated with the LS of the second and third parities (p<0.05). We speculate that a synonymous variant of NLRP5 may be involved in folliculogenesis accompanied by BMP15, FSHR, BMPR1B, AMH, and GDF9, resulting in the different fecundity of Small-tailed Han sheep. Our studies provide valuable genetic markers for sheep breeding.

Animals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 71 ◽  
Author(s):  
Mei Zhou ◽  
Zhangyuan Pan ◽  
Xiaohan Cao ◽  
Xiaofei Guo ◽  
Xiaoyun He ◽  
...  

2019 ◽  
Vol 51 (1) ◽  
pp. 151-152 ◽  
Author(s):  
Guang‐Xin E ◽  
Dong‐Ke Zhou ◽  
Bai‐Gao Yang ◽  
Xing‐Hai Duan ◽  
Ri‐Su Na ◽  
...  

Author(s):  
Zahraa Isam ◽  
Rabab Omran ◽  
Ammad Hassan Mahmood

  Objective: The calcium-sensing receptor (CASR) is a G-protein-coupled receptor that is mainly expressed in the parathyroid and the kidneys where it regulates parathyroid hormone secretion and renal tubular calcium reabsorption. Inactivating and activating CASR gene due to mutations severally caused hypercalcemia or hypocalcemia disorders. The aim of the study was to investigate the risk factor of CASR rs1801725 (Ala986Ser) patients with renal disease.Method: The blood samples were collected from 100 patients and divided into two groups, each one containing 50 samples; chronic kidney disease and end-stage renal disease, who admitted Merjan Teaching Hospital in Babylon Province, Iraq, from February to July 2016. In addition, healthy persons as a control group (50 samples). Genotyping of CASR single-nucleotide polymorphisms (SNP) was performed using a polymerase chain reaction technique, followed by single-strand conformation polymorphism. Accordingly, these DNA polymorphisms were confirmed using DNA sequencing.Results: The conformational haplotypes of CASR, exon7 NCBI Primer3plus reference were obtained in three patterns, including two, three, and four bands, due to the presence SNPs within the studied region. These SNPs leads to change three amino acid residues of CASR, including amino acid substitutions were Ala 128→ Ser 128, Leu 155→Tye 155, and Leu 156→ Ser 156 that may affect or modified the tertiary structure of the receptor, subsequently the function like the affinity to calcium ion may be effected.Conclusion: These results suggest that the variants of CASR SNP, namely, rs1801725 might be involved in susceptibility to kidney stone disease.


2007 ◽  
Vol 05 (06) ◽  
pp. 1297-1318 ◽  
Author(s):  
CATHERINE L. WORTH ◽  
G. RICHARD J. BICKERTON ◽  
ADRIAN SCHREYER ◽  
JULIA R. FORMAN ◽  
TAMMY M. K. CHENG ◽  
...  

The prediction of the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on function depends critically on exploiting all information available on the three-dimensional structures of proteins. We describe software and databases for the analysis of nsSNPs that allow a user to move from SNP to sequence to structure to function. In both structure prediction and the analysis of the effects of nsSNPs, we exploit information about protein evolution, in particular, that derived from investigations on the relation of sequence to structure gained from the study of amino acid substitutions in divergent evolution. The techniques developed in our laboratory have allowed fast and automated sequence-structure homology recognition to identify templates and to perform comparative modeling; as well as simple, robust, and generally applicable algorithms to assess the likely impact of amino acid substitutions on structure and interactions. We describe our strategy for approaching the relationship between SNPs and disease, and the results of benchmarking our approach — human proteins of known structure and recognized mutation.


2018 ◽  
Vol 18 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Reza Talebi ◽  
Ahmad Ahmadi ◽  
Fazlollah Afraz ◽  
Julien Sarry ◽  
Florent Woloszyn ◽  
...  

Abstract The present study aimed to investigate the presence of polymorphisms at four known genes controlling ovine prolificacy i.e. BMP15, GDF9, BMPR1B and B4GALNT2 in a sample of 115 Iranian Mehraban ewes and their association with litter size (LS) and lambs’ birth weight (BW) traits. Using Sanger sequencing of exons and polymorphism specific genotyping, ten SNPs (Single Nucleotide Polymorphisms) were observed in only two genes, GDF9 and BMPR1B. Seven SNPs were found in the GDF9 gene on the chromosome 5. Among them, six were already described in the coding sequence, and a new one (g.41840985C>T) was found in the 3’UTR. In the BMPR1B gene on the chromosome 6, three novel SNPs were detected in the exon 7 (g.29382184G>A; g.29382337G>A and g.29382340G>A). Allelic frequencies were established for six SNPs among the ten identified and they were in Hardy-Weinberg equilibrium. A significant association was found between the novel SNPs found in the exon 7 of BMPR1B and LS. Present results indicate the potential role of the BMPR1B locus in controlling prolificacy of Mehraban sheep and provide genetic markers for further exploitation in selection to improve reproductive efficiency.


Sign in / Sign up

Export Citation Format

Share Document