scholarly journals Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models

2013 ◽  
Vol 13 (23) ◽  
pp. 12043-12058 ◽  
Author(s):  
M. S. Johnston ◽  
S. Eliasson ◽  
P. Eriksson ◽  
R. M. Forbes ◽  
K. Wyser ◽  
...  

Abstract. An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems) is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009), several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at ~4 m s−1. Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods >30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate eastward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 hPa and in the upper troposphere between 250 hPa and 500 hPa, there is less ice than the observations and it does not persist as long after peak convection. The modelled upper-tropospheric cloud fraction anomaly, however, is of a comparable magnitude and exhibits a similar longevity as the observations.

2013 ◽  
Vol 13 (5) ◽  
pp. 13653-13684
Author(s):  
M. S. Johnston ◽  
P. Eriksson ◽  
S. Eliasson ◽  
M. D. Zelinka ◽  
R. M. Forbes ◽  
...  

Abstract. A~method to determine the mean response of upper tropospheric water to localised deep convective (DC) events is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009), several fields related to moist processes and radiation are composited with respect to local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the above study are the isolation of DC events in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterization of the DC-induced anomalies. The DC events observed in this study propagate westward at ~ 4 m s−1. Both the upper tropospheric relative humidity and outgoing longwave radiation are substantially perturbed over a broad horizontal extent during peak convection and for long periods of time. Cloud fraction anomaly increases throughout the upper troposphere, especially in the 200–250 hPa layer, reaching peak coverage following deep convection. Cloud ice water content anomaly confined to pressures greater than about 250 hPa and peaks near 450 hPa within a few hours of the DC event but remain enhanced following the DC event. Consistent with the large increase in upper tropospheric cloud ice, albedo increases dramatically and persists for sometime following the DC event. Applying the method to the model demonstrates that it is able to capture the large-scale responses to DC events, most notably for outgoing longwave radiation, but there are a number of important differences. For example, the DC signature of upper tropospheric humidity consistently covers a broader horizontal area than what is observed. In addition, the DC events move eastward in the model, but westward in the observations, and exhibit an unrealistic 24 h repeat cycle. Moreover, the modeled upper tropospheric cloud fraction anomalies – despite being of comparable magnitude and exhibiting similar longevity – are confined to a thinner layer that is closer to the tropopause and peak earlier than in observations. Finally, the modeled ice water content anomalies at pressures greater than about 350 hPa are about twice as large as in the observations and do not persist as long after peak convection.


2015 ◽  
Vol 54 (10) ◽  
pp. 2087-2097 ◽  
Author(s):  
Sujan Khanal ◽  
Zhien Wang

AbstractRemote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.


Author(s):  
Allyson Rugg ◽  
Julie Haggerty ◽  
Alain Protat

AbstractHigh ice water content (HIWC; defined herein as at least 1.0 g m−3) conditions are often found in the anvils of convective systems and can cause engine damage and/or failure in aircraft. We use ice water content (IWC) retrievals from satellite-borne radar and lidar (CloudSat and CALIOP) to provide the first analysis of global HIWC frequency using 11 years of data (2007 to 2017). Results show HIWC is generally present in 1 to 2% of CloudSat and CALIOP IWC retrievals between flight levels 270 (27,000 ft or 8.230 km) and 420 (FL420; 42,000 ft or 12.801 km) in areas with frequent convection. Similar rates of HIWC are found over midlatitude oceans at relatively low altitudes (below FL270). Possible non-convective mechanisms for the formation of this low-level HIWC are discussed, as are the uncertainties suggesting the results at these low altitudes are an overestimation of the true threat of HIWC to aircraft engines. The satellite IWC retrievals are also used to validate a HIWC diagnostic tool which provides storm-scale statistics on HIWC over the Contiguous United States (CONUS) during the summer convective season (May through August, 2012 to 2019). Results over the CONUS suggest HIWC over the Great Plains is highest in June, when a point in the region is under HIWC conditions about 25 hours out of 30 days on average. The mean area-equivalent diameters of HIWC conditions in some areas of the Great Plains exceeds 350 km and the conditions can persist for 4 to 5 hours.


2016 ◽  
Vol 16 (10) ◽  
pp. 6091-6105 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoë ◽  
Charles G. Bardeen ◽  
Jonathan H. Jiang ◽  
Lei Huang

Abstract. Changes in the shape of cloud ice water content (IWC) vertical structure due to variations in Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depths (AODs), Ozone Monitoring Instrument (OMI) absorptive aerosol optical depths (AAODs), and Microwave Limb Sounder (MLS) CO (an absorptive aerosol proxy) at 215 hPa are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR IWC profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Analysis is performed for 12 separate regions over land and ocean, and carried out applying MODIS AOD fields that attempt to correct for 3-D cloud adjacency effects. The 3-D cloud adjacency effects have a small impact upon our particular calculations of aerosol–cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude. Similar analyses are carried out for three AAOD and three CO bins. On average, the vertical profiles of the means of the derivatives based upon the profile shapes over land and ocean are smaller for the profiles binned according to AAOD and CO values, than for the MODIS AODs, which include both scattering and absorptive aerosol. This difference in character supports the assertion that absorptive aerosol can inhibit cloud development.


2014 ◽  
Vol 7 (4) ◽  
pp. 1779-1801 ◽  
Author(s):  
F. Szczap ◽  
Y. Gour ◽  
T. Fauchez ◽  
C. Cornet ◽  
T. Faure ◽  
...  

Abstract. The 3DCLOUD algorithm for generating stochastic three-dimensional (3-D) cloud fields is described in this paper. The generated outputs are 3-D optical depth (τ) for stratocumulus and cumulus fields and 3-D ice water content (IWC) for cirrus clouds. This model is designed to generate cloud fields that share some statistical properties observed in real clouds such as the inhomogeneity parameter ρ (standard deviation normalized by the mean of the studied quantity), the Fourier spectral slope β close to −5/3 between the smallest scale of the simulation to the outer Lout (where the spectrum becomes flat). Firstly, 3DCLOUD assimilates meteorological profiles (humidity, pressure, temperature and wind velocity). The cloud coverage C, defined by the user, can also be assimilated, but only for stratocumulus and cumulus regime. 3DCLOUD solves drastically simplified basic atmospheric equations, in order to simulate 3-D cloud structures of liquid or ice water content. Secondly, the Fourier filtering method is used to constrain the intensity of ρ, β, Lout and the mean of τ or IWC of these 3-D cloud structures. The 3DCLOUD model was developed to run on a personal computer under Matlab environment with the Matlab statistics toolbox. It is used to study 3-D interactions between cloudy atmosphere and radiation.


2016 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoe ◽  
Charles G. Bardeen

Abstract. Changes in the shape of cloud ice water content vertical structure due to aerosol variations are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR ice water content (IWC) profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Our analysis is performed for 12 separate regions over land and ocean, and carried out applying Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) fields that attempt to correct for 3D cloud adjacency effects. The 3D cloud adjacency effects have a small impact upon our calculations of aerosol-cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude.


2012 ◽  
Vol 39 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Melody Avery ◽  
David Winker ◽  
Andrew Heymsfield ◽  
Mark Vaughan ◽  
Stuart Young ◽  
...  

2005 ◽  
Vol 62 (2) ◽  
pp. 518-530 ◽  
Author(s):  
D. L. Wu ◽  
W. G. Read ◽  
A. E. Dessler ◽  
S. C. Sherwood ◽  
J. H. Jiang

Abstract A technique for detecting large hydrometeors at high altitudes is described here and applied to the Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS) 203-GHz radiance measurements at tangent pressures between 200 and 46 hPa. At these tangent pressures the radiances remain optically thin and cloudy-sky radiances are brighter than normal clear-sky cases. Unlike infrared/visible cloud observations, the 203-GHz radiances can penetrate most ice clouds and are sensitive to ice crystals of convective origin. Rough ice water content (IWC) retrievals are made near the tropopause using estimated size distributions from in situ convective studies. The seasonal mean IWC observed at 100 hPa reaches vapor-equivalent 20 ppmv or more over convective centers, dominating the total water content. Convectively lofted ice, therefore, appears to be hydrologically significant at the tropical cold point. IWC is well correlated spatially with relative humidity with respect to ice (RHi) at 100 hPa during both the dry (January–March) and moist (July–September) periods.


2010 ◽  
Vol 49 (9) ◽  
pp. 1971-1991 ◽  
Author(s):  
Dominique Bouniol ◽  
Alain Protat ◽  
Julien Delanoë ◽  
Jacques Pelon ◽  
Jean-Marcel Piriou ◽  
...  

Abstract The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw, Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud parameterization.


2008 ◽  
Vol 65 (7) ◽  
pp. 2025-2043 ◽  
Author(s):  
Vitaly I. Khvorostyanov ◽  
Judith A. Curry

Abstract The kinetic equation of stochastic condensation for cloud drop size spectra is extended to account for crystalline clouds and also to include the accretion–aggregation process. The size spectra are separated into small and large size fractions that correspond to cloud drops (ice) and rain (snow). In Part I of this two-part paper, analytical solutions are derived for the small-size fractions of the spectra that correspond to cloud drops and cloud ice particles that can be identified with cloud liquid water or cloud ice water content, and used in bulk microphysical schemes employed in cloud and climate models. Solutions for the small-size fraction have the form of generalized gamma distributions. Simple analytical expressions are found for parameters of the gamma distributions that are functions of quantities that are available in cloud and climate models: liquid or ice water content and its vertical gradient, mean particle radius or concentration, and supersaturation or vertical velocities. Equations for the gamma distribution parameters provide an explanation of the dependence of the observed spectra on atmospheric dynamics, cloud temperature, and cloud liquid water or ice water content. The results are illustrated with example calculations for a crystalline cloud. The analytical solutions and expressions for the parameters presented here can be used for parameterization of the small-size fraction size spectra in liquid and crystalline clouds and related quantities (e.g., optical properties, lidar, and radar reflectivities).


Sign in / Sign up

Export Citation Format

Share Document