cold point
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 32)

H-INDEX

25
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 151-160
Author(s):  
FALAHAL DALABEEH

. The climatology of the cold-point tropopause (CPT) and tropopause characteristics in a subtropical area like The Arabian Peninsula is examined using the radiosonde data of the CPT characteristics and NCEP Reanalysis data of the tropopause characteristics. The monthly mean data for January and July are analyzed for three stations, namely Medina, Tabuk and Dammam in Saudi Arabia. The trends of CPT and tropopause characteristics of pressure, height, temperature, temperature anomalies, relative humidity, wind speed and potential temperature are also analyzed.  The trends of these characteristics show that they experienced a sharp change during the 1990s and a significant change for the period from 2000 to 2016. For the whole period of study, the month of July, CPT and tropopause pressure decreased for about 5 hPa, whereas the height increased for more than 100 m. The temperature experienced a sudden drop during the beginning of the 1990s and a smooth decrease during the following years in January. Furthermore, a strong correlation is found between the CPT temperature and the Solar Cycle during the ‘90s period then it decreased sharply after this period.


2021 ◽  
Vol 21 (10) ◽  
pp. 7947-7961
Author(s):  
Francesco Cairo ◽  
Mauro De Muro ◽  
Marcel Snels ◽  
Luca Di Liberto ◽  
Silvia Bucci ◽  
...  

Abstract. A polarization diversity elastic backscatter lidar was deployed on the equatorial island of Palau in February and March 2016 in the framework of the EU StratoClim project. The system operated unattended in the Palau Atmosferic Observatory from 15 February to 25 March 2016 during the nighttime. Each lidar profile extends from the ground to 30 km height. Here, the dataset is presented and discussed in terms of the temperature structure of the upper troposphere–lower stratosphere (UTLS) obtained from co-located radiosoundings. The cold-point tropopause (CPT) was higher than 17 km. During the campaign, several high-altitude clouds were observed, peaking approximately 3 km below the CPT. Their occurrence was associated with cold anomalies in the upper troposphere (UT). Conversely, when warm UT anomalies occurred, the presence of cirrus was restricted to a 5 km thick layer centred 5 km below the CPT. Thin and subvisible cirrus (SVC) were frequently detected close to the CPT. The particle depolarization ratios of these cirrus were generally lower than the values detected in the UT clouds. CPT cirrus occurrence showed a correlation with cold anomalies likely triggered by stratospheric wave activity penetrating the UT. The back-trajectories study revealed a thermal and convective history compatible with the convective outflow formation for most of the cirrus clouds, suggesting that the majority of air masses related to the clouds had encountered convection in the past and had reached the minimum temperature during its transport in less than 48 h before the observation. A subset of SVC with low depolarization and no sign of significative recent uplifting may have originated in situ.


2021 ◽  
Vol 21 (8) ◽  
pp. 6565-6591
Author(s):  
Clarissa Alicia Kroll ◽  
Sally Dacie ◽  
Alon Azoulay ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. Increasing the temperature of the tropical cold-point region through heating by volcanic aerosols results in increases in the entry value of stratospheric water vapor (SWV) and subsequent changes in the atmospheric energy budget. We analyze tropical volcanic eruptions of different strengths with sulfur (S) injections ranging from 2.5 Tg S up to 40 Tg S using EVAens, the 100-member ensemble of the Max Planck Institute – Earth System Model in its low-resolution configuration (MPI-ESM-LR) with artificial volcanic forcing generated by the Easy Volcanic Aerosol (EVA) tool. Significant increases in SWV are found for the mean over all ensemble members from 2.5 Tg S onward ranging between [5, 160] %. However, for single ensemble members, the standard deviation between the control run members (0 Tg S) is larger than SWV increase of single ensemble members for eruption strengths up to 20 Tg S. A historical simulation using observation-based forcing files of the Mt. Pinatubo eruption, which was estimated to have emitted (7.5±2.5) Tg S, returns SWV increases slightly higher than the 10 Tg S EVAens simulations due to differences in the aerosol profile shape. An additional amplification of the tape recorder signal is also apparent, which is not present in the 10 Tg S run. These differences underline that it is not only the eruption volume but also the aerosol layer shape and location with respect to the cold point that have to be considered for post-eruption SWV increases. The additional tropical clear-sky SWV forcing for the different eruption strengths amounts to [0.02, 0.65] W m−2, ranging between [2.5, 4] % of the aerosol radiative forcing in the 10 Tg S scenario. The monthly cold-point temperature increases leading to the SWV increase are not linear with respect to aerosol optical depth (AOD) nor is the corresponding SWV forcing, among others, due to hysteresis effects, seasonal dependencies, aerosol profile heights and feedbacks. However, knowledge of the cold-point temperature increase allows for an estimation of SWV increases of 12 % per Kelvin increase in mean cold-point temperature. For yearly averages, power functions are fitted to the cold-point warming and SWV forcing with increasing AOD.


2021 ◽  
Vol 21 (5) ◽  
pp. 3725-3740
Author(s):  
Chaim I. Garfinkel ◽  
Ohad Harari ◽  
Shlomi Ziskin Ziv ◽  
Jian Rao ◽  
Olaf Morgenstern ◽  
...  

Abstract. The connection between the dominant mode of interannual variability in the tropical troposphere, the El Niño–Southern Oscillation (ENSO), and the entry of stratospheric water vapor is analyzed in a set of model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project and for Phase 6 of the Coupled Model Intercomparison Project. While the models agree on the temperature response to ENSO in the tropical troposphere and lower stratosphere, and all models and observations also agree on the zonal structure of the temperature response in the tropical tropopause layer, the only aspect of the entry water vapor response with consensus in both models and observations is that La Niña leads to moistening in winter relative to neutral ENSO. For El Niño and for other seasons, there are significant differences among the models. For example, some models find that the enhanced water vapor for La Niña in the winter of the event reverses in spring and summer, some models find that this moistening persists, and some show a nonlinear response, with both El Niño and La Niña leading to enhanced water vapor in both winter, spring, and summer. A moistening in the spring following El Niño events, the signal focused on in much previous work, is simulated by only half of the models. Focusing on Central Pacific ENSO vs. East Pacific ENSO, or temperatures in the mid-troposphere compared with temperatures near the surface, does not narrow the inter-model discrepancies. Despite this diversity in response, the temperature response near the cold point can explain the response of water vapor when each model is considered separately. While the observational record is too short to fully constrain the response to ENSO, it is clear that most models suffer from biases in the magnitude of the interannual variability of entry water vapor. This bias could be due to biased cold-point temperatures in some models, but others appear to be missing forcing processes that contribute to observed variability near the cold point.


2021 ◽  
Author(s):  
Sergey Khaykin ◽  
Martina Krämer ◽  
Elizabeth Moyer ◽  
Silvia Bucci ◽  
Armin Afchine ◽  
...  

<p>Deployment of the high-altitude M55-Geophysica aircraft in Kathmandu during Summer 2017 within StratoClim campaign has yielded a wealth of unique high-resolution measurements in the Asian Monsoon Anticyclone (AMA). In a particular flight (F8, 10 August 2017) the aircraft flew at the cold-point tropopause level through active overshoots and their outflows minutes to hours old. The measurements reveal up to 2500 ppmv of ice water above 17 km in large aggregated ice crystals up to 700 µm in diameter. Smaller crystals were observed as high as 18.8 km (410 K). Tracer and thermodynamical measurements show manifestations of vigorous vertical motions and provide evidence for ongoing mixing of tropospheric and stratospheric air around the tropopause. We use an ensemble of airborne and satellite measurements inside and downwind of convective overshoots together with trajectory modeling to characterize the impact of overshooting convection on the thermodynamical structure and chemical composition of the Asian tropopause layer. The effect of cross-tropopause convective transport on the Asian lower stratospheric water vapour is discussed.</p>


2021 ◽  
Author(s):  
Clarissa Kroll ◽  
Hauke Schmidt ◽  
Claudia Timmreck

<p>Large volcanic eruptions affect the distribution of atmospheric water vapour, for instance through cooling of the surface, warming of the lowermost stratosphere, and increasing the upwelling in the tropical tropopause region.</p><p>To better understand the volcanic impact on the tropical tropopause region and associated changes in the water vapour distribution in the stratosphere we employ a combination of short term convection-resolving global simulations with ICON and long term low resolution ensemble simulations with the MPI-ESM1.2-LR EVAens<strong>, </strong>both with prescribed volcanic forcing. With the EVAens a long term statistical analysis of the water vapour trends during the build-up and decay of a volcanic aerosol layer is made possible. The impact of the heating in the cold point regions is studied for five different eruption magnitudes. Stratospheric water vapour changes are analyzed in simulations with synthetic and observation based aerosol profiles showing that the distance of the aerosol profile from the cold point region can be more important for the water vapour entry into the stratosphere than the emitted amount of sulfur.</p><p>Whereas the EVAens is ideal to investigate the slow ascent of water vapour into the stratosphere the 10 km high resolution simulations with ICON allow insights into the convective changes after volcanic eruptions going beyond the limitations parameterizations usually impose on the model data.</p>


2021 ◽  
Author(s):  
Albert Hertzog ◽  
Riwal Plougonven ◽  

<p>Strateole-2 is a project aimed at studying the coupling between the troposphere and the stratosphere in the deep tropics. The project originality pertains to the use of long-duration ballons, which can fly for several months at 18 or 20 km altitude. The first Strateole-2 campaign took place from November 2019 to February 2020: 8 balloons with various instrumental configurations were released in the lower stratosphere from Seychelles Islands, in the Indian Ocean.<br>This first campaign was primarily devoted to testing all systems (balloons, gondolas, and instruments) developed for the project, and was very successful: the balloons flew for 85 days onaverage over the whole tropical band, and most instruments performed nominally. In-situ meteorological measurements performed every 30-s on each flight provide a unique description of gravity-wave activity in the tropics and its relation to deep convection. The first observations of aerosols and water vapor onboard long-duration balloons were also achieved, which e.g. highlighted the tape recorder signal in the tropical lower stratosphere. Very innovative instruments also premiered during the campaign: RACHuTS, a light reeled payload, for instance performed 50 high-resolution vertical profiles of temperature, aerosols and water vapor down to 2km below the balloon, crossing several times the cold-point tropopause. ROC collected hundreds of temperature profiles down to the middle troposphere through GPS radio-occultations. Last, one balloon also carried a nadir-pointing backscatter lidar, which has described the underlying convection at unprecedented temporal resolution. An overview of the flights and first results will be presented.<br>Two forthcoming balloon campaigns are planned within Strateole-2, in 2021-22 and 2024-25. Each will release 20 balloons. </p>


2021 ◽  
Author(s):  
Maximilien Bolot ◽  
Stephan Fueglistaler

<p>The role played by tropical storms in the tropical tropopause layer (TTL), the transitional layer regulating the flux into the stratosphere of trace gases affecting radiation and the ozone layer, has been a long-standing open question. Progress has been slow because of computational limitations and challenging conditions for measurements and most numerical studies have used simulations over limited domains whose results must be upscaled to the tropical surface to infer global impacts. We compute the first global observational estimate of the convective ice flux at near tropical tropopause levels by using spaceborne lidar measurements from CALIOP. The calculation uses a method to convert from lidar extinction to sedimenting ice flux and uses error propagation to provide margins of uncertainty. We show that, at any given level in the TTL, the sedimenting ice flux exceeds the inflow of vapor computed from ERA5 reanalysis, revealing additional ice transport and allowing to deduce the advective ice flux as a function of altitude. The contribution to this flux of large-scale motions (resolved by ERA5) is computed and the residual is hypothesized to represent the flux of ice on the convective scale. Results show without ambiguity that the upward ice flux in deep convection dominates moisture transport up to close to the level of the cold point tropopause.</p>


2021 ◽  
Author(s):  
Ohad Harari ◽  
Chaim garfinkel ◽  
Shlomi Ziskin

<p>The connection between the dominant mode of interannual variability in the tropical troposphere, El Niño Southern<br>Oscillation (ENSO), and entry of stratospheric water vapor, is analyzed in a set of the model simulations archived for the<br>Chemistry-Climate Model Initiative (CCMI) project and for phase 6 of the Coupled Model Intercomparison Project. While the<br>models agree on the temperature response to ENSO in the tropical troposphere and lower stratosphere, and all models also agree<br> on the zonal structure of the response in the tropical tropopause layer, the only aspect of the entry water vapor with consensus<br>is that La Niña leads to moistening in winter relative to neutral ENSO. For El Niño and for other seasons there are significant<br>differences among the models. For example, some models find that the enhanced water vapor for La Niña in the winter of the<br>event reverses in spring and summer, other models find that this moistening persists, while some show a nonlinear response<br>with both El Niño and La Niña leading to enhanced water vapor in both winter, spring, and summer. A moistening in the spring<br> following El Niño events, perhaps the strongest signal in observations, is simulated by only half of the models. Focusing on<br>Central Pacific ENSO versus East Pacific ENSO, or temperatures in the mid-troposphere as compared to temperatures near the<br>surface, does not narrow the inter-model discrepancies. Despite this diversity in response, the temperature response near the<br>cold point can explain the response of water vapor when each model is considered separately. While the observational record is<br>too short to fully constrain the response to ENSO, it is clear that most models suffer from biases in the magnitude of interannual<br>variability of entry water vapor. This bias could be due to biased cold point temperatures in some models, but others appear to<br>be missing forcing processes that contribute to observed variability near the cold point</p>


Sign in / Sign up

Export Citation Format

Share Document