convective systems
Recently Published Documents


TOTAL DOCUMENTS

1061
(FIVE YEARS 260)

H-INDEX

68
(FIVE YEARS 8)

Abstract A Valid Time Shifting (VTS) method is explored for the GSI-based ensemble variational (EnVar) system modified to directly assimilate radar reflectivity at convective scales. VTS is a cost-efficient method to increase ensemble size by including subensembles before and after the central analysis time. Additionally, VTS addresses common time and phase model error uncertainties within the ensemble. VTS is examined here for assimilating radar reflectivity in a continuous hourly analysis system for a case study of 1-2 May 2019. The VTS implementation is compared against a 36-member control experiment (ENS-36), to increase ensemble size (3×36 VTS), and as a cost-savings method (3×12 VTS), with time-shifting intervals τ between 15 and 120 min. The 3×36 VTS experiments increased the ensemble spread, with largest subjective benefits in early cycle analyses during convective development. The 3×12 VTS experiments captured analysis with similar accuracy as ENS-36 by the third hourly analysis. Control forecasts launched from hourly EnVar analyses show significant skill increases in 1-h precipitation over ENS-36 out to hour 12 for 3×36 VTS experiments, subjectively attributable to more accurate placement of the convective line. For 3×12 VTS, experiments with τ ≥ 60 min met and exceeded the skill of ENS-36 out to forecast hour 15, with VTS-3×12τ90 maximizing skill. Sensitivity results demonstrate preference to τ = 30–60 min for 3x36 VTS and 60 – 120 min for 3×12 VTS. The best 3×36 VTS experiments add a computational cost of 45-67%, compared to the near tripling of costs when directly increasing ensemble size, while best 3×12 VTS experiments save about 24-41% costs over ENS-36.


Abstract This study analyzes the low short-range predictability of the 3 May 2020 derecho using a 40-member convection-allowing Model for Prediction Across Scales (MPAS) ensemble. Elevated storms formed in south-central Kansas late at night and evolved into a progressive mesoscale convective system (MCS) during the morning while moving across southern Missouri and northern Arkansas, and affected western and middle Tennessee and southern Kentucky in the afternoon. The convective initiation (CI) in south-central Kansas, the organization of a dominant bow echo MCS and the MCS maintenance over Tennessee were identified as the three main predictability issues. These issues were explored using three MPAS ensemble members, observations and the Rapid Refresh analyses. The MPAS members were classified as successful or unsuccessful with regard to each predictability issue. CI in south-central Kansas was sensitive to the temperature and dewpoint profiles in low levels, which were associated with greater elevated thermodynamic instability and lower level of free convection in the successful member. The subsequent organization of a dominant bowing MCS was well predicted by the member that had more widespread convection in the early stages and no detrimental interaction with other simulated convective systems. Lastly, the inability of MPAS ensemble members to predict the MCS maintenance over western and middle Tennessee was linked to a dry bias in low levels and much lower thermodynamic instability ahead of the MCS compared to observations. This case demonstrates the challenges in operational forecasting of warm-season derecho-producing progressive MCSs, particularly when ensemble numerical weather prediction guidance solutions differ considerably.


Author(s):  
Erma YULIHASTIN ◽  
Tri Wahyu HADI ◽  
Muhammad Rais ABDILLAH ◽  
Irineu Rakhmah FAUZIAH ◽  
Nining Sari NINGSIH

2021 ◽  
Author(s):  
Vera A. Zhukova ◽  
Nikolay P. Krasnenko ◽  
Konstantin N. Pustovalov ◽  
Petr M. Nagorskiy ◽  
Tatyana S. Koshikova ◽  
...  

2021 ◽  
Author(s):  
Tatyana Koshikova ◽  
Michael Kartavykh ◽  
Konstantin Pustovalov ◽  
Peter Nagorskiy ◽  
Ilya Churilov

2021 ◽  
Author(s):  
Ruoyu Wang ◽  
Yuchen Dou ◽  
Jianhao Zhou ◽  
Ziqi Ben ◽  
Yiming Wang ◽  
...  

2021 ◽  
Author(s):  
Andries Jan de Vries ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Heini Wernli

Abstract. Tropical ice clouds have an important influence on the Earth’s radiative balance. They often form as a result of tropical deep convection, which strongly affects the water budget of the tropical tropopause layer. Ice cloud formation involves complex interactions on various scales, which are not fully understood yet and lead to large uncertainties in climate predictions. In this study, we investigate the formation of tropical ice clouds related to deep convection in the West African monsoon, using stable water isotopes as tracers of moist atmospheric processes. We perform simulations using the regional isotope-enabled model COSMOiso with different resolutions and treatments of convection for the period of June–July 2016. First, we evaluate the ability of our simulations to represent the isotopic composition of monthly precipitation through comparison with GNIP observations, and the precipitation characteristics related to the monsoon evolution and convective storms based on insights from the DACCIWA field campaign in 2016. Next, a case study of a mesoscale convective system (MCS) explores the isotope signatures of tropical deep convection in atmospheric water vapour and ice. Convective updrafts within the MCS inject enriched ice into the upper troposphere leading to depletion of vapour within these updrafts due to the preferential condensation and deposition of heavy isotopes. Water vapour in downdrafts within the same MCS are enriched by non-fractionating sublimation of ice. In contrast to ice within the MCS core regions, ice in widespread cirrus shields is isotopically in approximate equilibrium with the ambient vapour, which is consistent with in situ formation of ice. These findings from the case study are supported by a statistical evaluation of isotope signals in the West African monsoon ice clouds. The following five key processes related to tropical ice clouds can be distinguished based on their characteristic isotope signatures: (1) convective lofting of enriched ice into the upper troposphere, (2) cirrus clouds that form in situ from ambient vapour under equilibrium fractionation, (3) sedimentation and sublimation of ice in the mixed-phase cloud layer in the vicinity of convective systems and underneath cirrus shields, (4) sublimation of ice in convective downdrafts that enriches the environmental vapour, and (5) the freezing of liquid water in the mixed-phase cloud layer at the base of convective updrafts. Importantly, the results show that convective systems strongly modulate the humidity budget and the isotopic composition of the lower tropical tropopause layer. They contribute to about 40 % of the total water and 60 % of HDO in the 175–125 hPa layer in the African monsoon region according to estimates based on our model simulations. Overall, this study demonstrates that isotopes can serve as useful tracers to disentangle the role of different processes in the Earth’s water cycle, including convective transport, the formation of ice clouds, and their impact on the tropical tropopause layer.


Sign in / Sign up

Export Citation Format

Share Document