scholarly journals Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

2017 ◽  
Vol 17 (3) ◽  
pp. 2009-2033 ◽  
Author(s):  
Hwajin Kim ◽  
Qi Zhang ◽  
Gwi-Nam Bae ◽  
Jin Young Kim ◽  
Seung Bok Lee

Abstract. Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 =  NR-PM1+ black carbon (BC)) was 27.5 µg m−3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6–90.7 µg m−3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C  =  0.06), cooking activities represented by a cooking OA factor (COA, O / C  =  0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C  =  0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C  = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C  =  0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air quality in Seoul during winter is influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ±1σ = 43.6 ± 12.4 µg m−3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low-PM loading periods (12.6 ± 7.1 µg m−3) tended to occur under higher-WS and lower-RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (20 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.

2016 ◽  
Author(s):  
Hwajin Kim ◽  
Qi Zhang ◽  
Gwi-Nam Bae ◽  
Jin Young Kim ◽  
Seung Bok Lee

Abstract. Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results are reported from Seoul, Korea, which reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR - PM1 + black carbon (BC)) was 27.5 µg m−3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) of organic aerosol (OA) were 0.37, 1.79, and 0.022, respectively, which gives that average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6–90.7 µg m−3) and composition of PM1 varied dynamically during the measurement period, due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon like OA factor (HOA; O / C = 0.06), cooking activities represented by a cooking OA factor (COA; O / C = 0.15), wood combustion represented by a biomass burning OA factor (BBOA; O / C = 0.34), and secondary organic aerosol (SOA) represented by a semi-volatile oxygenated OA factor (SV-OOA; O / C = 0.56) and a low volatility oxygenated OA factor (LV-OOA; O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass whereas SV-OOA and LV-OOA contributed 15 % and 26 %, respectively. Our results indicate that air quality in Seoul during winter is influenced strongly by secondary aerosol formation with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ± 1σ = 43.6 ± 12.4 µg m−3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low PM loading periods (12.6 ± 7.1 µg m−3) tended to occurred under higher WS and lower RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (21 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors including meteorological conditions, local anthropogenic emissions, and upwind sources.


2020 ◽  
Author(s):  
Suneeti Mishra ◽  
Sachchida Tripathi ◽  
Navaneeth Thamban ◽  
Vipul Lalchandani ◽  
Varun Kumar ◽  
...  

<p>Size resolved data of chemical species carries a lot of latent information about the sources and atmospheric processes which lead to their formation and growth. Source apportionment techniques on organic or inorganic aerosols provide a fair amount of information about the sources but this analysis only provides a partial picture owing to the complicated nature of the ambient aerosols which may contain both, organic as well as inorganic particulate matter. Traditionally, potential emission sources are distinguished by either the organic or inorganic tracers present in ambient aerosol, but recently several studies have performed PMF on both the species (Sun et al, 2012). However, it tells more about the final transformed products which could be formed from different pathways but not much about the transformation pathways. Insights about the source and the atmospheric processes involved can be derived from the analysis of size-resolved data of the ambient aerosol. PMF on Size-resolved information helps us to narrow down the possible pathways of the transformed products.</p><p>However, there is very limited literature available to help us understand more about size-resolved bulk particulate matter. In this manuscript, a novel approach to perform Positive Matrix Factorization (PMF) on real-time size-resolved Unit Mass Resolution (UMR) data from Aerosol Mass Spectrometer (AMS) is presented. Both size- and time-resolved PMF is performed on non-refractory particle composition (organic & inorganic) on the UMR PTOF data of two sites in one of the most polluted cities in the world. The sampling through Long Time of flight mass spectrometer (LToF-AMS) was carried out at Indian Institute of Technology, Delhi which is located in Hauz Khaz area, at the heart of Delhi NCR, whereas parallel sampling through High-resolution Time of flight aerosol mass spectrometer (HR-ToF-AMS) was carried out at Manav Rachna University which is located in Faridabad within Delhi NCR at a downwind location. PMF was performed on the data by using Multi-linear Engine (ME-2) on PMF model by SoFi (Source Finder) tool. A seven-factor solution was chosen based on the factor profiles, time series, diurnals and correlation with the external factors obtained by supplementary instruments. The size-resolved spectra of the species at an individual site was studied and the difference between the sites was compared.</p>


2017 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Michael R. Giordano ◽  
Lars E. Kalnajs ◽  
Anita Avery ◽  
J. Douglas Goetz ◽  
Sean M. Davis ◽  
...  

Abstract. Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population. Previous work over the continent has primarily utilized low temporal resolution aerosol filters to answer questions about the chemical composition of Antarctic aerosols. Bulk aerosol sampling has been useful in identifying seasonal cycles in the aerosol populations, especially in populations that have been attributed to Southern Ocean phytoplankton emissions. However, real-time, high-resolution chemical composition data are necessary to identify the mechanisms and exact timing of changes in the Antarctic aerosol. The recent 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high-resolution aerosol mass spectrometer (SP-AMS – soot particle aerosol mass spectrometer – or AMS) to the continent. Data obtained from the AMS, and a suite of other aerosol, gas-phase, and meteorological instruments, are presented here. In particular, this paper focuses on the aerosol population over coastal Antarctica and the evolution of that population in austral spring. Results indicate that there exists a sulfate mode in Antarctica that is externally mixed with a mass mode vacuum aerodynamic diameter of 250 nm. Springtime increases in sulfate aerosol are observed and attributed to biogenic sources, in agreement with previous research identifying phytoplankton activity as the source of the aerosol. Furthermore, the total Antarctic aerosol population is shown to undergo three distinct phases during the winter to summer transition. The first phase is dominated by highly aged sulfate particles comprising the majority of the aerosol mass at low wind speed. The second phase, previously unidentified, is the generation of a sub-250 nm aerosol population of unknown composition. The second phase appears as a transitional phase during the extended polar sunrise. The third phase is marked by an increased importance of biogenically derived sulfate to the total aerosol population (photolysis of dimethyl sulfate and methanesulfonic acid (DMS and MSA)). The increased importance of MSA is identified both through the direct, real-time measurement of aerosol MSA and through the use of positive matrix factorization on the sulfur-containing ions in the high-resolution mass-spectral data. Given the importance of sub-250 nm particles, the aforementioned second phase suggests that early austral spring is the season where new particle formation mechanisms are likely to have the largest contribution to the aerosol population in Antarctica.


2010 ◽  
Vol 10 (10) ◽  
pp. 22669-22723 ◽  
Author(s):  
Y.-L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
K. L. Demerjian ◽  
W.-N. Chen ◽  
...  

Abstract. Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) during the summer 2009 Field Intensive Study at Queens College in New York City. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of total PM1 mass on average. The average mass size distribution of OA presents a small mode peaking at ~150 nm (Dva) in addition to an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of sulfate and OA both show pronounced peaks between 01:00–02:00 p.m. EST due to photochemical production. The average (±1σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012(±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62(±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified five OA components: a hydrocarbon-like OA (HOA), two types of oxygenated OA (OOA) including a low-volatility OOA (LV-OOA) and a semi-volatile OOA (SV-OOA), a cooking-emission related OA (COA), and a unique nitrogen-enriched OA (NOA). HOA appears to represent primary OA (POA) from urban traffic emissions. It comprises primarily of reduced species (H/C=1.83; O/C=0.06) and shows a mass spectral pattern very similar to those of POA from fossil fuel combustion, and correlates tightly with traffic emission tracers including elemental carbon and NOx. LV-OOA, which is highly oxidized (O/C=0.63) and correlates well with sulfate, appears to be representative for regional, aged secondary OA (SOA). SV-OOA, which is less oxidized (O/C=0.38) and correlates well with non-refractory chloride, likely represents less photo-chemically aged, semi-volatile SOA. COA shows a similar spectral pattern to the reference spectra of POA from cooking emissions and a distinct diurnal pattern peaking around local lunch and dinner times. In addition, NOA is characterized with prominent CxH2x+2N+ peaks likely from amine compounds. Our results indicate that cooking-related activities are a major source of POA in NYC, releasing comparable amounts of POA as traffic emissions. POA=HOA+COA) on average accounts for ~30% of the total OA mass during this study while SOA dominates the OA composition with SV-OOA and LV-OOA on average accounting for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC involves a~continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that nitrogen-containing organic species such as amines might have played an important role in the atmospheric processing of OA in NYC, likely involving acid-base chemistry. Analysis of air mass trajectories and satellite imagery of aerosol optical depth (AOD) indicates that the high potential source regions of secondary sulfate and aged OA are mainly located in regions to the west and southwest of the city.


2009 ◽  
Vol 9 (9) ◽  
pp. 3095-3111 ◽  
Author(s):  
Y. Sun ◽  
Q. Zhang ◽  
A. M. Macdonald ◽  
K. Hayden ◽  
S. M. Li ◽  
...  

Abstract. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the peak of Whistler Mountain (2182 m above sea level), British Columbia, from 19 April to 16 May 2006, as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign. The mass concentrations and size distributions of non-refractory submicron particle (NR-PM1) species (i.e., sulfate, nitrate, ammonium, chloride, and organics) were measured in situ at 10-min time resolution. The HR-ToF-AMS results agreed well with collocated measurements. The average concentration of non-refractory submicron particulate matter (NR-PM1; 1.9 μg m−3) is similar to those observed at other remote, high elevation sites in North America. Episodes of enhanced aerosol loadings were observed, due to influences of regional and trans-Pacific transport of air pollution. Organics and sulfate were the dominant species, on average accounting for 55% and 30%, respectively, of the NR-PM1 mass. The average size distributions of sulfate and ammonium both showed an accumulation mode peaking at ~500 nm in vacuum aerodynamic diameter (Dva) while those of organic aerosol (OA) and nitrate peaked at ~300 nm. The size differences suggested that sulfate and OA were mostly present in external mixtures from different source origins. We also quantitatively determined the elemental composition of OA using the high resolution mass spectra. Overall, OA at Whistler Peak was highly oxygenated, with an average organic-mass-to-organic-carbon ratio (OM/OC) of 2.28±0.23 and an atomic ratio of oxygen-to-carbon (O/C) of 0.83±0.17. The nominal formula for OA was C1H1.66N0.03O0.83 for the entire study. Two significant trans-Pacific dust events originated from Asia were observed at Whistler Peak during this study. While both events were characterized with significant enhancements of coarse mode particles and mineral contents, the composition and characteristics of NR-PM1 were significantly different between them. One trans-Pacific event occurred on 15 May 2006, during which ammonium sulfate contributed >90% of the total NR-PM1 mass. This event was followed by a high OA episode likely associated with regional emissions. In total, three enhanced regional OA events, each of which lasted 2–3 days, were observed during this study. In contrast to the two dust events, the regional OA events were generally characterized with higher OA/sulfate ratio, less oxidized OA, and lower OM/OC ratio.


Sign in / Sign up

Export Citation Format

Share Document