scholarly journals Reactive quenching of electronically excited NO<sub>2</sub><sup>∗</sup> and NO<sub>3</sub><sup>∗</sup> by H<sub>2</sub>O as potential sources of atmospheric HO<sub><i>x</i></sub> radicals

2018 ◽  
Vol 18 (19) ◽  
pp. 14005-14015 ◽  
Author(s):  
Terry J. Dillon ◽  
John N. Crowley

Abstract. Pulsed laser excitation of NO2 (532–647 nm) or NO3 (623–662 nm) in the presence of H2O was used to initiate the gas-phase reaction NO2∗+H2O → products (Reaction R5) and NO3∗+H2O → products (Reaction R12). No evidence for OH production in Reactions (R5) or (R12) was observed and upper limits for OH production of k5b/k5<1×10-5 and k12b/k12<0.03 were assigned. The upper limit for k5b∕k5 renders this reaction insignificant as a source of OH in the atmosphere and extends the studies (Crowley and Carl, 1997; Carr et al., 2009; Amedro et al., 2011) which demonstrate that the previously reported large OH yield by Li et al. (2008) was erroneous. The upper limit obtained for k12b∕k12 indicates that non-reactive energy transfer is the dominant mechanism for Reaction (R12), though generation of small but significant amounts of atmospheric HOx and HONO cannot be ruled out. In the course of this work, rate coefficients for overall removal of NO3∗ by N2 (Reaction R10) and by H2O (Reaction R12) were determined: k10=(2.1±0.1)×10-11 cm3 molecule−1 s−1 and k12=(1.6±0.3)×10-10 cm3 molecule−1 s−1. Our value of k12 is more than a factor of 4 smaller than the single previously reported value.

2018 ◽  
Author(s):  
Terry J. Dillon ◽  
John N. Crowley

Abstract. Pulsed laser excitation of NO2 (532–647 nm) or NO3 (623–662 nm) in the presence of H2O was used to initiate the gas-phase reactions NO2* + H2O → products (R5) and NO3* + H2O → products (R12). No evidence for OH production in (R5) or (R12) was observed and upper-limits for OH production of k5b/k5 


2016 ◽  
Vol 119 (1) ◽  
pp. 5-18
Author(s):  
Ádám Illés ◽  
Mária Farkas ◽  
Gábor László Zügner ◽  
Gyula Novodárszki ◽  
Magdolna Mihályi ◽  
...  

2018 ◽  
Vol 122 (17) ◽  
pp. 4252-4264 ◽  
Author(s):  
François Bernard ◽  
Dimitrios K. Papanastasiou ◽  
Vassileios C. Papadimitriou ◽  
James B. Burkholder

2011 ◽  
Vol 11 (1) ◽  
pp. 2377-2405 ◽  
Author(s):  
M. E. Davis ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-3-hexen-1-ol ((Z)-CH3CH2CH=CHCH2CH2OH). (k1), 1-penten-3-ol (CH3CH2CH(OH)CH=CH2) (k2), (E)-2-penten-1-ol ((E)-CH3CH2CH=CHCH2OH) (k3), and (E)-2-hexen-1-ol ((E)-CH3CH2CH2CH=CHCH2OH) (k4), unsaturated alcohols that are emitted into the atmosphere following vegetation wounding, are reported. Rate coefficients were measured under pseudo-first-order conditions in OH over the temperature range 243–404 K at pressures between 20 and 100 Torr (He) using pulsed laser photolysis (PLP) to produce OH radicals and laser induced fluorescence (LIF) to monitor the OH temporal profile. The obtained rate coefficients were independent of pressure with negative temperature dependences that are well described by the Arrhenius expressions k1(T) = (1.3 ± 0.1) × 10−11 exp[(580 ± 10)/T]; k1(297K) = (1.06 ± 0.12) × 10−10 k2(T) = (6.8 ± 0.7) × 10−12 exp[(690 ± 20)/T]; k2(297K) = (7.12 ± 0.73) × 10−11 k3(T) = (6.8 ± 0.8) × 10−12 exp[(680 ± 20)/T]; k3(297K) = (6.76 ± 0.70) × 10−11 k4(T) = (5.4 ± 0.6) × 10−12 exp[(690 ± 20)/T]; k4(297K) = (6.15 ± 0.75) × 10−11 (in units of cm3 molecule−1 s−1). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. The rate coefficients obtained in this study are compared with literature values where possible.


2020 ◽  
Vol 755 ◽  
pp. 137757
Author(s):  
Mariela Aguilera Sammaritano ◽  
Mauro González Vera ◽  
Pablo Marcelo Cometto ◽  
Tatiane Nicola Tejero ◽  
Glauco F. Bauerfeldt ◽  
...  

2019 ◽  
Vol 123 (24) ◽  
pp. 5051-5060 ◽  
Author(s):  
Munkhbayar Baasandorj ◽  
Vassileios C. Papadimitriou ◽  
James B. Burkholder

Sign in / Sign up

Export Citation Format

Share Document