scholarly journals Supplementary material to "Synergistic effect of water-soluble species and relative humidity on morphological changes of aerosol particles in Beijing mega-city during severe pollution episodes"

Author(s):  
Xiaole Pan ◽  
Baozhu Ge ◽  
Zhe Wang ◽  
Yu Tian ◽  
Hang Liu ◽  
...  
2018 ◽  
Author(s):  
Xiaole Pan ◽  
Baozhu Ge ◽  
Zhe Wang ◽  
Yu Tian ◽  
Hang Liu ◽  
...  

Abstract. Depolarization ratio (δ) of backscattered light from aerosol particle is an applicable parameter for real-time distinguishing spherical and non-spherical particles, which has been widely adopted by ground-based Lidar observation and satellite remote sensing. From November 2016 to February of 2017, it consecutively suffered from numbers of severe air pollution at Beijing with daily averaged mass concentration of PM2.5 (aerodynamic diameter less than 2.5 μm) larger than 150 μg/m3. We preformed concurrent measurements of water-soluble chemical species and depolarization properties of aerosol particles on the basis of a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-14) and a bench-top optical particle counter with a polarization detection module (POPC). We found that δ value of ambient particles generally decrease as mass concentration of PM2.5 increased at unfavorable meteorological condition. Ratio of mass concentration of nitrate (NO3−) to that of sulfate (SO42−) in PM2.5 was 1.5 ± 0.6, indicating of great importance of NOx in the formation of heavy pollution. Mass concentration of NO3− in PM2.5 (fNO3) was generally an order of magnitude higher than that in coarse mode (cNO3) with a mean fNO3 / cNO3 ratio of 14 ± 10. Relatively high allocation (fNO3/cNO3 = 5) of NO3− in coarse mode could be partially attributed to hygroscopic growth/coagulation of nitrate-rich fine mode particles under higher relative humidity condition. As a result, δ values of particles with Dp = 2 μm (δDp = 2) and 5 μm (δDp = 5) decreased evidently as the mass fraction of water-soluble species (NO3− and SO42−) increase in both PM2.5 and PM2.5–10, respectively. In particular, due to synergistic effect of RH, δDp = 5 value could decrease by 50 % as mass fraction of NO3− in PM2.5–10 increased from 8 % to 23 %. It suggested that alteration of non-sphericity of mineral dust particles was evident owing to coating with pollutants and heterogeneous reactions on the surface of the particle during heavy pollution period. This study brings the attention to great variability of morphological changes of aerosol particles along the transport, which have great complex effects in evaluating their climate and health effect.


2019 ◽  
Vol 19 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Xiaole Pan ◽  
Baozhu Ge ◽  
Zhe Wang ◽  
Yu Tian ◽  
Hang Liu ◽  
...  

Abstract. Depolarization ratio (δ) of backscattered light is an applicable parameter for distinguishing the sphericity of particles in real time, which has been widely adopted by ground-based lidar observation systems. In this study, δ values of particles and chemical compositions in both PM2.5 (aerodynamic diameter less than 2.5 µm) and PM10 (aerodynamic diameter less than 10 µm) were concurrently measured on the basis of a bench-top optical particle counter with a polarization detection module (POPC) and a continuous dichotomous aerosol chemical speciation analyzer (ACSA-14) from November 2016 to February 2017 at an urban site in Beijing megacity. In general, measured δ values depended on both size and sphericity of the particles. During the observation period, mass concentrations of NO3- in PM2.5 (fNO3) were about an order of magnitude higher than that in PM2.5−10 (cNO3) with a mean fNO3∕cNO3 ratio of 14±10. A relatively low fNO3∕cNO3 ratio (∼5) was also observed under higher relative humidity conditions, mostly due to heterogeneous processes and particles in the coarse mode. We found that δ values of ambient particles in both PM2.5 and PM2.5−10 obviously decreased as mass concentration of water-soluble species increased at unfavorable meteorological conditions. This indicated that the morphology of particles was changed as a result of water-absorbing processes. The particles with optical size (Dp) of Dp = 5 µm were used to represent mineral dust particles, and its δ values (δDp=5) decreased by 50 % as the mass fraction of cNO3 increased from 2 % to 8 % and ambient relative humidity increased up to 80 %, suggesting that mineral dust particles were likely to be spherical during humid pollution episodes. During the observation, relative humidity inside the POPC measuring chamber was stable at 34±2 %, lower than the ambient condition. Its influence on the morphology was estimated to be limited and did not change our major conclusion. This study highlights the evident alteration of non-sphericity of mineral dust particles during their transport owing to a synergistic effect of both pollutant coatings and hygroscopic processes, which plays an important role in the evaluation of its environmental effect.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


ChemPlusChem ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 291-297
Author(s):  
Yifeng Gao ◽  
Jiaoxia Zhang ◽  
Zhihao Zhang ◽  
Zicheng Li ◽  
Qiu Xiong ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 536
Author(s):  
Shaojian He ◽  
Zhongrui Lu ◽  
Wenxu Dai ◽  
Kangning Yang ◽  
Yang Xue ◽  
...  

Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane exhibited higher water uptake and much better conductivity than the SPEEK membrane at low relative humidity. The best conductivity reached wass 0.062 S cm−1 for the composite membrane, which is quite stable during the water immersion test.


Sign in / Sign up

Export Citation Format

Share Document