drying rate
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 192)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
JO Akowuah ◽  
HA Boateng ◽  
G Obeng Akrofi ◽  
DE Maier

The technical performance of a 3-tonne capacity flatbed grain dryer was assessed based on its drying rate and drying efficiency. In addition, the quality of maize grains dried in the drying system was investigated through stress-crack analysis and germination test. Maize grains at an initial moisture content of 18.4% ± 0.1% (wb) were dried to a safe moisture content of 13.3% ± 0.2% (wb) in 5 hours, resulting in a drying rate of 1.02%/h at a drying efficiency of 67.35%. The average temperature observed in the plenum (55.8°C±1.5°C) was about twice higher than the ambient temperature during the drying period. The use of the flatbed dryer did not have any adverse effect on the viability of grains dried with a stress-crack index of 75 and percentage germination of 90%. This study demonstrated the viability of using the flatbed biomass-assisted dryer for drying maize and can reduce post-harvest losses of maize at the smallholder level. Int. J. Agril. Res. Innov. Tech. 11(2): 37-41, Dec 2021


2022 ◽  
Vol 45 (1) ◽  
Author(s):  
Hiroaki Tanaka ◽  
Yoshiyuki Komoda ◽  
Takafumi Horie ◽  
Hironobu Imakoma ◽  
Naoto Ohmura
Keyword(s):  

Author(s):  
Beatriz Castillo-Téllez ◽  
Margarita Castillo-Téllez ◽  
Gerardo Alberto Mejía-Pérez ◽  
Carlos Jesahel Vega Gómez

In celery, leaves, roots, and fruit contain a high value in medicinal properties and are used to prepare syrups, tinctures, infusions, or oils; however, its leaves are commonly discarded, wasting their nutritional and medicinal content. The dehydration of these leaves is a conservation option, increasing their shelf life. This study analyzes direct and mixed solar drying (SD and SM) kinetics and their effect on celery leaves. The moisture contents, drying rate, water activity, and colorimetry were obtained. Moreover, the fitting of experimental data to the mathematical models proposed in the literature. The moisture content stabilized at 150 min in the SM at the shortest time with a maximum drying rate of 0.1179 g∙water/g∙ dm∙min. The initial and final water activity was 0.98 and 0.412 in the SM and 0.403 in the SD. The SD better conserved the leaf color, with a total color change (ΔE) of 2.56, while the value obtained with the SM was 5.42. The experimental results of both technologies were better adjusted to the model Two exponential terms with an R² of 0.999. The results show that the solar drying of the celery leaves is feasible, and a quality product is obtained sustainably.


Author(s):  
A. I. Ol’shanskii ◽  
A. S. Marushchak

The methods of approximation of the curve of the drying rate of fabrics according to the methods of A. V. Lykov and V. V. Krasnikov are described. The results of processing experimental data on convective tissue drying are presented. Equations are given for determining the drying time of fabrics, the density of heat flows and the temperature of fabrics during the drying process. The equations for determining the drying coefficient and the relative drying rate are given. An analytical method for determining the temperature for the period of falling drying rate is considered. The comparison of the temperature values according to the results of analytical solutions with the values obtained by the experimental formula is given. It is shown that the number of Bio during drying of fabrics is less than one, and the main limiting factor is the external heat and moisture exchange of the evaporation surface from the surface of the material with the environment. Verification of the reliability of the calculated values obtained with experimental ones is presented. The discrepancy between the values is within 5 % of the accuracy of the experiment and processing.


2021 ◽  
Vol 14 (1) ◽  
pp. 26-34
Author(s):  
Della Yusfita Sari ◽  
Mustain Zamhari ◽  
Robert Junaidi

The drying process on kemplang crackers is one of the factors that determine the quality of the resulting product. Conventional drying has many disadvantages, namely fluctuating heat and poor hygiene that will affect product quality. So that kemplang crackers can be stored for a long time, it is necessary to reduce the water content of kemplang crackers. Drying kemplang crackers can use a drying rack with a biomass energy source from coconut shells. This study aims to design a tray dryer with biomass energy to obtain dryer performance based on the drying rate and to obtain a product that meets SNI No. 8272-2016. The treatments that were varied were set point temperatures of 55oC, 60oC, 65oC, and 70oC with mass variations of 50 gr, 100 gr, and 150 gr. The results showed that the optimum drying conditions at 70oC for 4 hours with an air velocity of 5.2 m/s2 obtained 9,84% moisture content in 50 gr kemplang crackers, 15.39% in 100 gr crackers and 19,2 in kemplang crackers 150 gr and a drying rate of 0,035028 kg/hour m2. The drying process requires 5,24 kg of dried coconut shell to produce heat energy of 95.358,81024 KJ with a by-product in the form of liquid smoke.


Author(s):  
J. Isa ◽  
O. I. Majasan ◽  
K. A. Jimoh

During milling of cereal grains, bran which is separated from the starchy endosperm of the grain is a major by-product. In this study, milled sorghum residue was dried in a cabinet dryer under different conditions (temperature and air velocity). The obtained drying data were fitted into ten existing mathematical models and obtained the best model while, the effective moisture diffusivity and activation energy of the drying process was determined using Arrhenius type approach. The result shows that the initial moisture content obtained for the sorghum residue using standard oven drying method were 41.28 ± 0.33%, 49.52 ± 0.63 % and 47.06 ± 0.42 % on wet basis for the wet residue of variety A, B and C, respectively, at equilibrium point, the final moisture content of about 12.93 ± 0.14 – 14.31± 0.07 as temperature ranges from 40 oC to 70 oC and air velocity ranges from 0.8 m/s to 1.2 m/s. During the drying process, the drying rate falls more rapidly as it was initially high as a result of more moisture in the sorghum residue and the drying rate decreases slowly until reaching the reduced moisture content. The obtained values of effective moisture diffusivity (Deff) ranges between 9.89 x 10-10 and 22.21 x 10-10 m2/s, 9.45 x 10-10 and 20.62 x 10-10 m2/s and 8.56 x 10-10 and 20.76 x 10-10 m2/s for variety A, B and C, respectively. However, the result of the modelling shows that the drying characteristics of variety A and B of the sorghum residue can be predicted using Midilli et al. model while the drying behaviour of Variety C can be predicted using Hii et al. model.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2168
Author(s):  
Laurens Leys ◽  
Gust Nuytten ◽  
Joris Lammens ◽  
Pieter-Jan Van Bockstal ◽  
Jos Corver ◽  
...  

The pharmaceutical industry is progressing toward the development of more continuous manufacturing techniques. At the same time, the industry is striving toward more process understanding and improved process control, which requires the implementation of process analytical technology tools (PAT). For the purpose of drying biopharmaceuticals, a continuous spin freeze-drying technology for unit doses was developed, which is based on creating thin layers of product by spinning the solution during the freezing step. Drying is performed under vacuum using infrared heaters to provide energy for the sublimation process. This approach reduces drying times by more than 90% compared to conventional batch freeze-drying. In this work, a new methodology is presented using near-infrared (NIR) spectroscopy to study the desorption kinetics during the secondary drying step of the continuous spin freeze-drying process. An inline PLS-based NIR calibration model to predict the residual moisture content of a standard formulation (i.e., 10% sucrose) was constructed and validated. This model was then used to evaluate the effect of different process parameters on the desorption rate. Product temperature, which was controlled by a PID feedback mechanism of the IR heaters, had the highest positive impact on the drying rate during secondary drying. Using a higher cooling rate during spin freezing was found to significantly increase the desorption rate as well. A higher filling volume had a smaller negative effect on the drying rate while the chamber pressure during drying was found to have no significant effect in the range between 10 and 30 Pa.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 141
Author(s):  
Vasileios Chasiotis ◽  
Dimitrios Tzempelikos ◽  
Andronikos Filios

In the present case study, a moisture diffusion model is developed to simulate the drying kinetics of Lavandula x allardii leaves for non-stationary convective drying regimes. Increasing temperature profiles are applied over the drying duration and the influence of temperature advancing rates on the moisture removal and the drying rate is investigated. The model assumes a one-dimensional moisture transfer under transient conditions, which occurs from the leaf center to the surface by liquid diffusion due to the concentration gradient developed by the surface water evaporation caused by the difference of water vapor partial pressure between the drying medium and the leaf surface. A numerical solution of Fick’s 2nd law is obtained by an in-house code using the finite volume method, including shrinkage and a variable temperature-dependent effective moisture diffusion coefficient. The numerical results have been validated against experimental data for selected cases using statistical indices and the predicted dehydration curves presented a good agreement for the higher temperature advancing rates. The examined modeling approach was found stable and can output, in a computationally efficient way, the temporal changes of moisture and drying rate. Thus, the present model could be used for engineering applications involving the design, optimization and development of drying equipment and drying schedules for the examined type of non-stationary drying patterns.


2021 ◽  
Vol 1 (5) ◽  
pp. 4-10
Author(s):  
Gedion Habtay ◽  
Maytham A. Al-Neama ◽  
Janos Buzas ◽  
Istvan Farkas

This paper presents the results of an experimental investigation on an indirect active type of solar dryer, using two distinct solar air collector and their impacts on drying agricultural products. The thermal performance of the proposed collectors has been evaluated using the first and second laws of thermodynamics. Experimental observations were done in climatic conditions Gödöllő, Hungary on the 2nd and 9th of October 2017. The experiments were also carried out to dry 2 kg of sliced apples spread over the drying trays. The mas flow rate of air was maintained as 0.038 kg/s and the dryer was operated from 10:00 a.m. to 3:00 p.m. When a double-pass solar air collector's results are compared to a single-pass solar air collector's, it's evident that the double-pass solar air collector produces much more energy and efficiency. The experimental results showed that single-pass and double-pass collectors have daily efficiencies of 42.77% and 56.10%, respectively, with average exergy efficiency values ranging from 31% to 49% for single-pass and 51% to 67% for double-pass. The most significant aspect determining the collectors' thermal efficiency was the temperature rise between the collector outlet and inlet. The average drying efficiencies of the solar dryer for the single and double-pass collectors were evaluated as 12.16% and 16.45%, respectively. The maximum temperature rise for double-pass was determined to be 20 °C, whereas single-pass was found to be 6.5 °C. Furthermore, the highest drying rate was achieved when sliced apples were dried with a double-pass collector mode. It reduced 52% of the water content in the apple in the same amount of time as single-pass drying, compared to 35% in the case of single-pass drying.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2991
Author(s):  
Dong Chen ◽  
Lei Qin ◽  
Yue Geng ◽  
Qinglong Kong ◽  
Silu Wang ◽  
...  

The aroma fingerprints and discrimination analysis of shiitake mushrooms under different drying conditions were performed by GC-IMS, GC-MS, and descriptive sensory analysis (DSA) with advanced chemometric methods. Three samples (A, B, and C) were treated with varied drying degree and rate. The sample A and C were at the same drying degree and the sample B and C were at the same drying rate. The GC-IMS volatile fingerprints, including the three-dimensional topographic map, topographic map, and gallery plot, showed that 29 compounds showed higher signal intensities in sample B. Moreover, 28 volatile compounds were identified by HS-SPME-GC-MS and only 8 compounds were ever detected by GC-IMS. The sample B not only had more varieties of volatile compounds, but also showed significant higher contents than sample A and C, especially C8 compounds (p < 0.05). Additionally, sample B showed the highest intensity in mushroom-like, chocolate-like, caramel, sweat, seasoning-like, and cooked potato-like odors by DSA. PCA, fingerprint similarity analysis (FSA) and PLSR further demonstrated that the sample B was different from sample A and C. These results revealed that samples with different drying degree were different and drying degree exerted more influence on the volatile flavor quality than the drying rate. This study will provide a foundation and establish a set of comprehensive and objective methods for further flavor analysis.


Sign in / Sign up

Export Citation Format

Share Document