scholarly journals Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds

2021 ◽  
Vol 21 (19) ◽  
pp. 15115-15134
Author(s):  
Zane Dedekind ◽  
Annika Lauber ◽  
Sylvaine Ferrachat ◽  
Ulrike Lohmann

Abstract. The discrepancy between the observed concentration of ice nucleating particles (INPs) and the ice crystal number concentration (ICNC) remains unresolved and limits our understanding of ice formation and, hence, precipitation amount, location and intensity. Enhanced ice formation through secondary ice production (SIP) could account for this discrepancy. Here, in a region over the eastern Swiss Alps, we perform sensitivity studies of additional simulated SIP processes on precipitation formation and surface precipitation intensity. The SIP processes considered include rime splintering, droplet shattering during freezing and breakup through ice–graupel collisions. We simulated the passage of a cold front at Gotschnagrat, a peak at 2281 m a.s.l. (above sea level), on 7 March 2019 with the Consortium for Small-scale Modeling (COSMO), at a 1 km horizontal grid spacing, as part of the RACLETS (Role of Aerosols and CLouds Enhanced by Topography and Snow) field campaign in the Davos region in Switzerland. The largest simulated difference in the ICNC at the surface originated from the breakup simulations. Indeed, breakup caused a 1 to 3 orders of magnitude increase in the ICNC compared to SIP from rime splintering or without SIP processes in the control simulation. The ICNCs from the collisional breakup simulations at Gotschnagrat were in best agreement with the ICNCs measured on a gondola near the surface. However, these simulations were not able to reproduce the ice crystal habits near the surface. Enhanced ICNCs from collisional breakup reduced localized regions of higher precipitation and, thereby, improved the model performance in terms of surface precipitation over the domain.

2021 ◽  
Author(s):  
Zane Dedekind ◽  
Annika Lauber ◽  
Sylvaine Ferrachat ◽  
Ulrike Lohmann

Abstract. The discrepancy between the observed concentration of ice nucleating particles (INPs) and the ice crystal number concentration (ICNC) remains unresolved and limits our understanding of ice formation and hence precipitation amount, location and intensity. Enhanced ice formation through secondary ice production (SIP) could be accounting for this discrepancy. Here, we present the results from a sensitivity model study in the Eastern Swiss Alps with additional simulated in-cloud SIP on precipitation formation and consequently on surface precipitation. The SIP processes considered include rime splintering, droplet shattering during freezing and breakup through ice-ice collisions. We simulated the passage of a cold front at Gotschnagrat, a peak at 2281 m above sea level (a.s.l.), on 7 March 2019 with COSMO, at a 1 km horizontal resolution, as part of the RACLETS field campaign in the Davos region in Switzerland. The largest simulated difference in the ICNC at the surface originated from the breakup simulations. Indeed, breakup caused a 1 to 3 order of magnitude increase in the ICNC compared to SIP from rime splintering or without SIP processes in the control simulations. The ICNCs from the collisional breakup simulations at Gotschnagrat were in better agreement with the ICNCs measured on a gondola near the surface. However, these simulations were not able to reproduce the ice crystal habits near the surface. Enhanced ICNCs from collisional breakup reduced localized regions of higher precipitation and thereby improving the model performance in terms of surface precipitation over the domain.


2021 ◽  
Vol 21 (9) ◽  
pp. 6681-6706
Author(s):  
Fabiola Ramelli ◽  
Jan Henneberger ◽  
Robert O. David ◽  
Johannes Bühl ◽  
Martin Radenz ◽  
...  

Abstract. The seeder–feeder mechanism has been observed to enhance orographic precipitation in previous studies. However, the microphysical processes active in the seeder and feeder region are still being understood. In this paper, we investigate the seeder and feeder region of a mixed-phase cloud passing over the Swiss Alps, focusing on (1) fallstreaks of enhanced radar reflectivity originating from cloud top generating cells (seeder region) and (2) a persistent low-level feeder cloud produced by the boundary layer circulation (feeder region). Observations were obtained from a multi-dimensional set of instruments including ground-based remote sensing instrumentation (Ka-band polarimetric cloud radar, microwave radiometer, wind profiler), in situ instrumentation on a tethered balloon system, and ground-based aerosol and precipitation measurements. The cloud radar observations suggest that ice formation and growth were enhanced within cloud top generating cells, which is consistent with previous observational studies. However, uncertainties exist regarding the dominant ice formation mechanism within these cells. Here we propose different mechanisms that potentially enhance ice nucleation and growth in cloud top generating cells (convective overshooting, radiative cooling, droplet shattering) and attempt to estimate their potential contribution from an ice nucleating particle perspective. Once ice formation and growth within the seeder region exceeded a threshold value, the mixed-phase cloud became fully glaciated. Local flow effects on the lee side of the mountain barrier induced the formation of a persistent low-level feeder cloud over a small-scale topographic feature in the inner-Alpine valley. In situ measurements within the low-level feeder cloud observed the production of secondary ice particles likely due to the Hallett–Mossop process and ice particle fragmentation upon ice–ice collisions. Therefore, secondary ice production may have been partly responsible for the elevated ice crystal number concentrations that have been previously observed in feeder clouds at mountaintop observatories. Secondary ice production in feeder clouds can potentially enhance orographic precipitation.


2020 ◽  
Author(s):  
Fabiola Ramelli ◽  
Jan Henneberger ◽  
Robert O. David ◽  
Johannes Bühl ◽  
Martin Radenz ◽  
...  

Abstract. The seeder-feeder mechanism has been observed to enhance orographic precipitation in previous studies. However, the microphysical processes active in the seeder and feeder region are still being understood. In this paper, we investigate the seeder and feeder region of a mixed-phase cloud passing over the Swiss Alps, focusing on (1) fallstreaks of enhanced radar reflectivity originating from cloud top generating cells (seeder region) and (2) a persistent low-level feeder cloud produced by the boundary layer circulation (feeder region). Observations were obtained from a multi-dimensional set of instruments including ground-based remote sensing instrumentation (Ka-band polarimetric cloud radar, microwave radiometer, wind profiler), in situ instrumentation on a tethered balloon system and ground-based aerosol and precipitation measurements. The cloud radar observations suggest that ice formation and growth was enhanced within cloud top generating cells, which is consistent with previous observational studies. However, uncertainties exist regarding the dominant ice formation mechanism within these cells. Here we propose different mechanisms that potentially enhance ice nucleation and growth in cloud top generating cells (convective overshooting, radiative cooling, droplet shattering) and attempt to estimate their potential contribution from an ice nucleating particle perspective. Once ice formation and growth within the seeder region exceeded a threshold value, the mixed-phase cloud became fully glaciated. Local flow effects on the lee side of the mountain barrier induced the formation of a persistent low-level feeder cloud over a small-scale topographic feature in the inner-Alpine valley. In situ measurements within the low-level feeder cloud observed the production of secondary ice particles likely due to the Hallett–Mossop process and ice particle fragmentation upon ice–ice collisions. Therefore, secondary ice production may have been partly responsible for the elevated ice crystal number concentrations that have been previously observed in feeder clouds at mountain-top observatories. Secondary ice production in feeder clouds can potentially enhance orographic precipitation.


2021 ◽  
Author(s):  
Xi Zhao ◽  
Xiaohong Liu ◽  
Vaughan Phillips ◽  
Sachin Patade ◽  
Minghui Diao ◽  
...  

2018 ◽  
Vol 18 (22) ◽  
pp. 16461-16480 ◽  
Author(s):  
Sylvia C. Sullivan ◽  
Christian Barthlott ◽  
Jonathan Crosier ◽  
Ilya Zhukov ◽  
Athanasios Nenes ◽  
...  

Abstract. Secondary ice production via processes like rime splintering, frozen droplet shattering, and breakup upon ice hydrometeor collision have been proposed to explain discrepancies between in-cloud ice crystal and ice-nucleating particle numbers. To understand the impact of this additional ice crystal generation on surface precipitation, we present one of the first studies to implement frozen droplet shattering and ice–ice collisional breakup parameterizations in a mesoscale model. We simulate a cold frontal rainband from the Aerosol Properties, PRocesses, And InfluenceS on the Earth's Climate campaign and investigate the impact of the new parameterizations on the simulated ice crystal number concentrations (ICNC) and precipitation. Near the convective regions of the rainband, contributions to ICNC can be as large from secondary production as from primary nucleation, but ICNCs greater than 50 L−1 remain underestimated by the model. The addition of the secondary production parameterizations also clearly intensifies the differences in both accumulated precipitation and precipitation rate between the convective towers and non-convective gap regions. We suggest, then, that secondary ice production parameterizations be included in large-scale models on the basis of large hydrometeor concentration and convective activity criteria.


2020 ◽  
Vol 77 (6) ◽  
pp. 2279-2296
Author(s):  
Fabian Hoffmann

Abstract The growth of ice crystals at the expense of water droplets, the Wegener–Bergeron–Findeisen (WBF) process, is of major importance for the production of precipitation in mixed-phase clouds. The effects of entrainment and mixing on WBF, however, are not well understood, and small-scale inhomogeneities in the thermodynamic and hydrometeor fields are typically neglected in current models. By applying the linear eddy model, a millimeter-resolution representation of turbulent deformation and molecular diffusion, we investigate these small-scale effects on WBF. While we show that entrainment is accelerating WBF by contributing to the evaporation of liquid droplets, entrainment may also cause aforementioned inhomogeneities, particularly regions filled with exclusively ice or liquid hydrometeors, which tend to decelerate WBF if the ice crystal concentration exceeds 100 L−1. At lower ice crystal concentrations, even weak turbulence can homogenize hydrometeor and thermodynamic fields sufficiently fast so as to not affect WBF. Independent of the ice crystal concentration, it is shown that a fully resolved entrainment and mixing process may delay the nucleation of entrained aerosols to ice crystals, thereby delaying the uptake of water vapor by the ice phase, further slowing down WBF. All in all, this study indicates that, under specific conditions, small-scale inhomogeneities associated with entrainment and mixing counteract the accelerated WBF in entraining clouds. However, further research is required to assess the importance of the newly discovered processes more broadly in fully coupled, evolving mixed-phase cloud systems.


2020 ◽  
Author(s):  
Xi Zhao ◽  
Xiaohong Liu ◽  
Vaughan T. J. Phillips ◽  
Sachin Patade

Abstract. For decades, measured ice crystal number concentrations have been found to be orders of magnitude higher than measured ice nucleating particles in moderately cold clouds. This observed discrepancy reveals the existence of secondary ice production (SIP) in addition to the primary ice nucleation. However, the importance of SIP relative to primary ice nucleation remains highly unclear. Furthermore, most weather and climate models do not represent well the SIP processes, leading to large biases in simulated cloud properties. This study demonstrates a first attempt to represent different SIP mechanisms (frozen raindrop shattering, ice-ice collisional break-up, and rime splintering) in a global climate model (GCM). The model is run in the single column mode to facilitate comparisons with the Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE) observations. We show the SIP importance in the four types of clouds during M-PACE (i.e., multilayer, and single-layer stratus, transition, and front clouds), with the maximum enhancement in ice crystal number concentration by up to 4 orders of magnitude in the moderately-cold clouds. We reveal that SIP is the dominant source of ice crystals near the cloud base for the long-lived Arctic single-layer mixed-phase clouds. The model with SIP improves the occurrence and phase partitioning of the mixed-phase clouds, reverses the vertical distribution pattern of ice number concentration, and provides a better agreement with observations. The findings of this study highlight the importance of considering the SIP in GCMs.


2016 ◽  
Vol 16 (8) ◽  
pp. 4945-4966 ◽  
Author(s):  
Robert J. Farrington ◽  
Paul J. Connolly ◽  
Gary Lloyd ◽  
Keith N. Bower ◽  
Michael J. Flynn ◽  
...  

Abstract. This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing in situ measurements from the Ice NUcleation Process Investigation And Quantification field campaign (INUPIAQ) at Jungfraujoch, Switzerland (3570 m a.s.l.) with the Weather Research and Forecasting model (WRF) simulations over real terrain surrounding Jungfraujoch. During the 2014 winter field campaign, between 20 January and 28 February, the model simulations regularly underpredicted the observed ice number concentration by 103 L−1. Previous literature has proposed several processes for the high ice number concentrations in orographic clouds, including an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice crystals into orographic clouds. We find that increasing INP concentrations in the model prevents the simulation of the mixed-phase clouds that were witnessed during the INUPIAQ campaign at Jungfraujoch. Additionally, the inclusion of secondary ice production upwind of Jungfraujoch into the WRF simulations cannot consistently produce enough ice splinters to match the observed concentrations. A flux of surface hoar crystals was included in the WRF model, which simulated ice concentrations comparable to the measured ice number concentrations, without depleting the liquid water content (LWC) simulated in the model. Our simulations therefore suggest that high ice concentrations observed in mixed-phase clouds at Jungfraujoch are caused by a flux of surface hoar crystals into the orographic clouds.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 542
Author(s):  
Annette K. Miltenberger ◽  
Tim Lüttmer ◽  
Christoph Siewert

Secondary ice production via rime-splintering is considered to be an important process for rapid glaciation and high ice crystal numbers observed in mixed-phase convective clouds. An open question is how rime-splintering is triggered in the relatively short time between cloud formation and observations of high ice crystal numbers. We use idealised simulations of a deep convective cloud system to investigate the thermodynamic and cloud microphysical evolution of air parcels, in which the model predicts secondary ice formation. The Lagrangian analysis suggests that the “in-situ” formation of rimers either by growth of primary ice or rain freezing does not play a major role in triggering secondary ice formation. Instead, rimers are predominantly imported into air parcels through sedimentation form higher altitudes. While ice nucleating particles (INPs) initiating heterogeneous freezing of cloud droplets at temperatures warmer than −10 °C have no discernible impact of the occurrence of secondary ice formation, in a scenario with rain freezing secondary ice production is initiated slightly earlier in the cloud evolution and at slightly different places, although with no major impact on the abundance or spatial distribution of secondary ice in the cloud as a whole. These results suggest that for interpreting and analysing observational data and model experiments regarding cloud glaciation and ice formation it is vital to consider the complex vertical coupling of cloud microphysical processes in deep convective clouds via three-dimensional transport and sedimentation.


Sign in / Sign up

Export Citation Format

Share Document