ice nucleation
Recently Published Documents


TOTAL DOCUMENTS

1792
(FIVE YEARS 395)

H-INDEX

94
(FIVE YEARS 10)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Tien N. H. Lo ◽  
Sung Woo Hong ◽  
Ha Soo Hwang ◽  
In Park

Superhydrophobic Al surfaces with excellent durability and anti-icing properties were fabricated by coating dual-scale rough Al substrates with fluorinated polysilazane (FPSZ). Flat Al plates were etched using an acidic solution, followed by immersion in boiling water to generate hierarchical micro-nano structures on their surfaces. The FPSZ coatings were synthesized by grafting 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17), a fluoroalkyl silane), onto methylpolysilazane, an organopolysilazane (OPSZ) backbone. The high water contact angle (175°) and low sliding angle (1.6°) of the FPSZ-coated sample with an FAS-17 content of 17.3 wt% promoted the efficient removal of a frozen ice column with a low ice adhesion strength of 78 kPa at −20.0 °C (70% relative humidity), which was 4.3 times smaller than that of an OPSZ-coated surface. The FPSZ-coated Al surface suppressed ice nucleation, leading to a decrease in ice nucleation temperature from −19.5 to −21.9 °C and a delay in freezing time from 334 to 4914 s at −19.0 °C compared with the OPSZ-coated Al surface. Moreover, after 40 icing–melting cycles the freezing temperature of a water droplet on the FPSZ-coated Al surface remained unchanged, whereas that on the FAS-17-coated Al surface increased from −22.3 to −20.7 °C. Therefore, the durability of the polymeric FPSZ coating was superior to that of the FAS-17 monolayer coating.


2022 ◽  
Vol 22 (1) ◽  
pp. 65-91
Author(s):  
Manuel Baumgartner ◽  
Christian Rolf ◽  
Jens-Uwe Grooß ◽  
Julia Schneider ◽  
Tobias Schorr ◽  
...  

Abstract. Laboratory measurements at the AIDA cloud chamber and airborne in situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low temperatures of the tropical tropopause layer, together with the number of ice crystals also the transport of water vapor into the stratosphere. Both the appearance of cirrus clouds and the amount of stratospheric water feed back to the radiative budget of the atmosphere. In order to explore the enhanced ice onset humidities, we re-examine the entire homogeneous ice nucleation process, ice onset, and nucleated crystal numbers, by means of a two-moment microphysics scheme embedded in the trajectory-based model (CLaMS-Ice) as follows: the well-understood and described theoretical framework of homogeneous ice nucleation includes certain formulations of the water activity of the freezing aerosol particles and the saturation vapor pressure of water with respect to liquid water. However, different formulations are available for both parameters. Here, we present extensive sensitivity simulations testing the influence of three different formulations for the water activity and four for the water saturation on homogeneous ice nucleation. We found that the number of nucleated ice crystals is almost independent of these formulations but is instead sensitive to the size distribution of the freezing aerosol particles. The ice onset humidities, also depending on the particle size, are however significantly affected by the choices of the water activity and water saturation, in particular at cold temperatures ≲205 K. From the CLaMS-Ice sensitivity simulations, we here provide combinations of water saturation and water activity formulations suitable to reproduce the new, enhanced freezing line.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Biao Jiang ◽  
Yizhou Shen ◽  
Jie Tao ◽  
Yangjiangshan Xu ◽  
Haifeng Chen ◽  
...  

Freezing of liquid water occurs in many natural phenomena and affects countless human activities. The freezing process mainly involves ice nucleation and continuous growth, which are determined by the energy and structure fluctuation in supercooled water. Herein, considering the surface hydrophilicity and crystal structure differences between metal and graphene, we proposed a kind of surface configuration design, which was realized by graphene nanosheets being alternately anchored on a metal substrate. Ice nucleation and growth were investigated by molecular dynamics simulations. The surface configuration could induce ice nucleation to occur preferentially on the metal substrate where the surface hydrophilicity was higher than the lateral graphene nanosheet. However, ice nucleation could be delayed to a certain extent under the hindering effect of the interfacial water layer formed by the high surface hydrophilicity of the metal substrate. Furthermore, the graphene nanosheets restricted lateral expansion of the ice nucleus at the clearance, leading to the formation of a curved surface of the ice nucleus as it grew. As a result, ice growth was suppressed effectively due to the Gibbs–Thomson effect, and the growth rate decreased by 71.08% compared to the pure metal surface. Meanwhile, boundary misorientation between ice crystals was an important issue, which also prejudiced the growth of the ice crystal. The present results reveal the microscopic details of ice nucleation and growth inhibition of the special surface configuration and provide guidelines for the rational design of an anti-icing surface.


2022 ◽  
pp. 209-248
Author(s):  
Ari Laaksonen ◽  
Jussi Malila
Keyword(s):  

2022 ◽  
Author(s):  
Alice Keinert ◽  
Kathrin Deck ◽  
Tilia Gädeke ◽  
Thomas Leisner ◽  
Alexei A. Kiselev

Crystallization of supercooled liquid water in most natural environments starts with heterogeneous nucleation of ice induced by a nucleation site. Mineral surfaces, which form the majority of aqueous interfaces in...


Author(s):  
William D Fahy ◽  
Elena C Maters ◽  
Rona Giese-Miranda ◽  
Michael P Adams ◽  
Leif G Jahn ◽  
...  

Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is...


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 258
Author(s):  
Elzbieta Pach ◽  
Albert Verdaguer

Scanning electron microscopy (SEM) is a powerful imaging technique able to obtain astonishing images of the micro- and the nano-world. Unfortunately, the technique has been limited to vacuum conditions for many years. In the last decades, the ability to introduce water vapor into the SEM chamber and still collect the electrons by the detector, combined with the temperature control of the sample, has enabled the study of ice at nanoscale. Astounding images of hexagonal ice crystals suddenly became real. Since these first images were produced, several studies have been focusing their interest on using SEM to study ice nucleation, morphology, thaw, etc. In this paper, we want to review the different investigations devoted to this goal that have been conducted in recent years in the literature and the kind of information, beyond images, that was obtained. We focus our attention on studies trying to clarify the mechanisms of ice nucleation and those devoted to the study of ice dynamics. We also discuss these findings to elucidate the present and future of SEM applied to this field.


2021 ◽  
Author(s):  
Diana L. Pereira ◽  
Irma Gavilán ◽  
Consuelo Letechipía ◽  
Graciela B. Raga ◽  
Teresa Pi Puig ◽  
...  

Abstract. Agricultural soil erosion, both mechanical and eolic, may impact cloud processes as some aerosol particles are able to facilitate ice crystals formation. Given the large agricultural sector in Mexico, this study investigates the ice nucleating abilities of agricultural dust collected at different sites and generated in the laboratory. The immersion freezing mechanism of ice nucleation was simulated in the laboratory via the Universidad Nacional Autónoma de México (UNAM)- Micro Orifice Uniform Deposit Impactor (MOUDI)-Droplet freezing technique (DFT) (UNAM-MOUDI-DFT). The results show that agricultural dust from the Mexican territory promote ice formation in a temperature range from −11.8 ºC to −34.5 ºC, with ice nucleating particle (INP) concentrations between 0.11 L−1 and 41.8 L−1. Furthermore, aerosol samples generated in the laboratory are more efficient than those collected in the field, with T50 values (i.e., the temperature at which 50 % of the droplets freeze) higher by more than 2.9 ºC. The mineralogical analysis indicated a high concentration of feldspars i.e., K-feldspar and plagioclase (> 40 %) in most of the aerosol and soil samples, with K-feldspar significantly correlated with the T50 of particles with sizes between 1.8 µm and 3.2 µm. Similarly, the organic carbon (OC) was correlated with the efficiency of aerosol samples from 3.2 µm to 5.6 µm and 1.0 µm to 1.8 µm. Finally, a decrease in the efficiency as INPs, after heating the samples at 300 ºC for 2 h, evidenced that the organic matter from agricultural soils can influence the role of INPs in mixed-phase clouds.


2021 ◽  
Author(s):  
Dawei Tang ◽  
Tianwen Wei ◽  
Jinlong Yuan ◽  
Haiyun Xia ◽  
Xiankang Dou

Abstract. Bioaerosols are usually defined as aerosols derived from biological systems such as bacteria, fungi, and viruses. They play an important role in atmospheric physical and chemical processes including ice nucleation and cloud condensation. As such, their dispersion affects not only public health but regional climate as well. Lidar is an effective technique for aerosol detection and pollution monitoring. It is also used to profile the vertical distribution of wind vectors. In this paper, a coherent Doppler wind lidar (CDWL) was deployed for wind and aerosol detection in Hefei, China, from 11 to 20 March in 2020. A wideband integrated bioaerosol sensor (WIBS) was deployed to monitor variations in local fluorescent bioaerosol levels. During observation, three aerosol transport events were captured. The WIBS data show that during these transport events, several types of fluorescent aerosol particles exhibit abnormal increases in either their concentration, number fractions to total particles, or number fractions to whole fluorescent aerosols. These increases are attributed to transported external fluorescent bioaerosols instead of local bioaerosols. Based on the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory model and the characteristics of external aerosols in WIBS, their possible sources, transport paths, and components are discussed. This work proves the influence of external aerosol transport on local high particulate matter (PM) pollution and fluorescent aerosol particle composition. The combination of WIBS and CDWL expands the aerosol monitoring parameters and proves to be a potential method for the real-time monitoring of fluorescent biological aerosol transport events. It contributes to the further understanding of bioaerosol transport.


Sign in / Sign up

Export Citation Format

Share Document