lagrangian analysis
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 103)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
pp. 0734242X2110667
Author(s):  
Hongjun Sun ◽  
Erchong Gao ◽  
Aipeng Zhou

After the landfill site is sealed, the uneven settlement is related to the safety of reutilisation of the site, and it is critical to calculate the uneven settlement of the site without error. In this article, the soil parameter of garbage body was changed with biodegradation. Fast Lagrangian Analysis of Continua in three dimensions (FLAC 3D) numerical simulation was applied to the settlement of the landfill site closure. In calculating the settlement of landfill, the soil parameters of landfill with age were obtained by field drilling experiments. The parameters can reflect the characteristics of soil organic matter in different biodegradation stages. Finally, the uneven settlement within 20 years of the closure period was obtained by the numerical simulation taking Jinzhou Nanshan landfill as an example. The results show that the settlement with the age increases gradually, but the rate will be more and more moderate, and the maximum subsidence value in the sealing field after 20 years will be 9.11 m, 15.71% of the maximum elevation. Around the landfill slope position of uneven settlement rate is bigger, and the maximum angle of uneven settlement is up to 45°. But the middle position is small, which is close to 0°.


Author(s):  
Kevin M. Smalley ◽  
Matthew D. Lebsock ◽  
Ryan Eastman ◽  
Mark Smalley ◽  
Mikael Witte

2021 ◽  
Author(s):  
Kevin M. Smalley ◽  
Matthew D. Lebsock ◽  
Ryan Eastman ◽  
Mark Smalley ◽  
Mikael Witte

Abstract. Pockets of open cells (POCs) have been shown to develop within closed-cell stratocumulus (StCu) and a large body of evidence suggests that the development of POCs result from changes in small-scale processes internal to the boundary layer rather than large-scale forcings. Precipitation is widely viewed as a key process important to POC development and maintenance. In this study, GOES-16 satellite observations are used in conjunction with MERRA-2 winds to track and compare the microphysical and environmental evolution of two populations of closed-cell StCu selected by visual inspection over the southeast Pacific Ocean: one group that transitions to POCs and another control group that does not. The high spatio-temporal resolution of the new GOES-16 data allows for a detailed examination of the temporal evolution of POCs in this region. We find that POCs tend to develop near the coast, last tens of hours, are larger than 104 km2, and often (88 % of cases) do not re-close before they exit the StCu deck. Most POCs are observed to form at night and tend to exit the StCu during the day when the StCu is contracting in area. Relative to the control trajectories, POCs have systematically larger effective radii, lower cloud drop number concentrations, comparable conditional in-cloud liquid water path, and a higher frequency of more intense rainfall. Meanwhile, no systematic environmental differences other than boundary-layer height are observed between POC and control trajectories. These results support the consensus view regarding the importance of precipitation on the formation and maintenance of POCs and demonstrate the utility of modern geostationary remote sensing data in evaluating POC lifecycle.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 428
Author(s):  
Ghassan Maraouch ◽  
Lyes Kadem

The formation of vortex rings at valve leaflets during ventricular inflow has been a topic of interest for many years. It is generally accepted nowadays that the purpose of vortex rings is to conserve energy, reduce the workload on the heart, and minimize particle residence time. We investigated these claims by testing three different levels of annulus angle for the mitral valve: a healthy case, a slightly angled case (20°), and a highly angled case (46°). Circulation was determined to be reversed in the non-healthy case, with a dominant counterclockwise rotation instead of clockwise. Viscous energy dissipation was highest in the slightly angled case, followed by the healthy case and then the highly angled case. A Lagrangian analysis demonstrated that the healthy case resulted in the least amount of stasis, requiring eight cardiac cycles to evacuate 99% of initial ventricle volume compared to the 16 and 13 cardiac cycles required by the slightly angled and highly angled cases, respectively.


Author(s):  
Alessandro Soli ◽  
Ivan Langella ◽  
Zhi X. Chen

AbstractThe physical mechanism leading to flame local extinction remains a key issue to be further understood. An analysis of large eddy simulation (LES) data with presumed probability density function (PDF) based closure (Chen et al., 2020, Combust. Flame, vol. 212, pp. 415) indicated the presence of localised breaks of the flame front along the stoichiometric line. These observations and their relation to local quenching of burning fluid particles, together with the possible physical mechanisms and conditions allowing their appearance in LES with a simple flamelet model, are investigated in this work using a combined Lagrangian-Eulerian analysis. The Sidney/Sandia piloted jet flames with compositionally inhomogeneous inlet and increasing bulk speeds, amounting to respectively 70 and 90% of the experimental blow-off velocity, are used for this analysis. Passive flow tracers are first seeded in the inlet streams and tracked for their lifetime. The critical scenario observed in the Lagrangian analysis, i.e., burning particles crossing extinction holes on the stoichiometric iso-surface, is then investigated using the Eulerian control-volume approach. For the 70% blow-off case the observed flame front breaks/extinction holes are due to cold and inhomogeneous reactants that are cast onto the stoichiometric iso-surface by large vortices initiated in the jet/pilot shear layer. In this case an extinction hole forms only when the strain effect is accompanied by strong subgrid mixing. This mechanism is captured by the unstrained flamelets model due to the ability of the LES to resolve large-scale strain and considers the SGS mixture fraction variance weakening effect on the reaction rate through the flamelet manifold. Only at 90% blow-off speed the expected limitation of the underlying combustion model assumption become apparent, where the amount of local extinctions predicted by the LES is underestimated compared to the experiment. In this case flame front breaks are still observed in the LES and are caused by a stronger vortex/strain interaction yet without the aid of mixture fraction variance. The reasons for these different behaviours and their implications from a physical and modelling point of view are discussed in this study.


2021 ◽  
Author(s):  
Wayne Oaks ◽  
Kevin Flora ◽  
Christian Santoni ◽  
Zexia Zhang ◽  
Fotis Sotiropoulos ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 117
Author(s):  
Giorgio Dall'Olmo ◽  
Francesco Nencioli ◽  
Thomas Jackson ◽  
Robert J. W. Brewin ◽  
John A. Gittings ◽  
...  

Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate how to use it by means of worked examples. OLTraj is based on satellite-derived geostrophic currents, which allows one to directly compare it with other in-situ or satellite products. We anticipate that OLTraj will foster a new interest in Lagrangian applications in ocean biology and biogeochemistry.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7475
Author(s):  
Xiaowei Guo ◽  
Xigui Zheng ◽  
Peng Li ◽  
Rui Lian ◽  
Cancan Liu ◽  
...  

The traditional anchoring method of bolts has insufficient control over the surrounding rock of the coal roadway. Based on this background, full-stress anchoring technology of bolts was proposed. Firstly, a mechanical relationship model of a bolt-drawing, anchoring interface was established to obtain the equations of the axial force and obtain shear stress distribution as well as the decreasing-load transfer law of the anchoring section of bolts. Through studying the prestress-loading experimental device of bolts, we found that increasing the initial preload could increase the axial force under the same conditions and the retarded anchoring section could control the axial-force loss of bolts in the middle of the anchoring section. Under the full-stress anchoring mode, the effect of applying a pre-tightening force was better than that of applying a pre-tightening force under traditional anchoring methods. Moreover, FLAC3D (Fast Lagrangian Analysis of Continua 3D; ITASCA (Ita sca International Inc), Minnesota, USA) numerical simulation calculation was performed. Under the full-stress anchoring mode of bolts, the increased anchoring length reduced the damage of the anchoring section, with a wider control range of the rock formation and higher strength of the compressive-stress anchoring zone. Based on the above research, four methods for applying the full-stress anchoring technology of bolts in engineering were proposed. The full-stress anchoring technology of bolts in the coal roadway has been applied in the support project of the return-air roadway at working face 3204 of the Taitou Coking Coal Mine of the Xiangning Coking Coal Group, Shanxi. The maximum moving distance of the roof and floor of the roadway was reduced from 200 to 42 mm, and the maximum moving distance on both coal sides was reduced from 330 to 86 mm. The full-stress anchoring technology of bolts was able to control the surrounding rock in the coal roadway.


Sign in / Sign up

Export Citation Format

Share Document