scholarly journals High-Dynamic-Range Imaging for Cloud Segmentation

2017 ◽  
Author(s):  
Soumyabrata Dev ◽  
Florian M. Savoy ◽  
Yee Hui Lee ◽  
Stefan Winkler

Abstract. Sky/cloud images obtained from ground-based sky-cameras are usually captured using a fish-eye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is over-exposed, and the regions near the horizon are under-exposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRSeg – an effective method for cloud segmentation using High-Dynamic-Range (HDR) imaging based on multi-exposure fusion. We describe the HDR generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR images for cloud segmentation and achieves very good results.

2018 ◽  
Vol 11 (4) ◽  
pp. 2041-2049 ◽  
Author(s):  
Soumyabrata Dev ◽  
Florian M. Savoy ◽  
Yee Hui Lee ◽  
Stefan Winkler

Abstract. Sky–cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg – an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.


2009 ◽  
Vol 97 (8) ◽  
pp. 1507-1521 ◽  
Author(s):  
David R. DeBoer ◽  
Russell G. Gough ◽  
John D. Bunton ◽  
Tim J. Cornwell ◽  
Ron J. Beresford ◽  
...  

Author(s):  
James Paul Mason ◽  
Phillip C Chamberlin ◽  
Daniel Seaton ◽  
Joan Burkepile ◽  
Robin Colaninno ◽  
...  

The Sun Coronal Ejection Tracker (SunCET) is an extreme ultraviolet imager and spectrograph instrument concept for tracking coronal mass ejections through the region where they experience the majority of their acceration: the difficult-to-observe middle corona. It contains a wide field of view (0--4~\Rs) imager and a 1~\AA\ spectral-resolution-irradiance spectrograph spanning 170--340~\AA. It leverages new detector technology to read out different areas of the detector with different integration times, resulting in what we call ``simultaneous high dynamic range", as opposed to the traditional high dynamic range camera technique of subsequent full-frame images that are then combined in post-processing. This allows us to image the bright solar disk with short integration time, the middle corona with a long integration time, and the spectra with their own, independent integration time. Thus, SunCET does not require the use of an opaque or filtered occulter. SunCET is also compact --- $\sim$15 $\times$ 15 $\times$ 10~cm in volume --- making it an ideal instrument for a CubeSat or a small, complimentary addition to a larger mission.


Author(s):  
Jingui Ma ◽  
Peng Yuan ◽  
Jing Wang ◽  
Guoqiang Xie ◽  
Heyuan Zhu ◽  
...  

Pulse contrast is a crucial parameter of high peak-power lasers since the prepulse noise may disturb laser–plasma interactions. Contrast measurement is thus a prerequisite to tackle the contrast challenge in high peak-power lasers. This paper presents the progress review of single-shot cross-correlator (SSCC) for real-time contrast characterization. We begin with the key technologies that enable an SSCC to simultaneously possess high dynamic range ($10^{10}$), large temporal window (50–70 ps) and high fidelity. We also summarize the instrumentation of SSCC prototypes and their applications on five sets of petawatt laser facilities in China. Finally, we discuss how to extend contrast measurements from time domain to spatiotemporal domain. Real-time and high-dynamic-range contrast measurements, provided by SSCC, can not only characterize various complex noises in high peak-power lasers but also guide the system optimization.


Sign in / Sign up

Export Citation Format

Share Document