scholarly journals Derivation of seawater <i>p</i>CO<sub>2</sub> from net community production identifies the South Atlantic Ocean as a CO<sub>2</sub> source

2022 ◽  
Vol 19 (1) ◽  
pp. 93-115
Author(s):  
Daniel J. Ford ◽  
Gavin H. Tilstone ◽  
Jamie D. Shutler ◽  
Vassilis Kitidis

Abstract. A key step in assessing the global carbon budget is the determination of the partial pressure of CO2 in seawater (pCO2 (sw)). Spatially complete observational fields of pCO2 (sw) are routinely produced for regional and global ocean carbon budget assessments by extrapolating sparse in situ measurements of pCO2 (sw) using satellite observations. As part of this process, satellite chlorophyll a (Chl a) is often used as a proxy for the biological drawdown or release of CO2. Chl a does not, however, quantify carbon fixed through photosynthesis and then respired, which is determined by net community production (NCP). In this study, pCO2 (sw) over the South Atlantic Ocean is estimated using a feed forward neural network (FNN) scheme and either satellite-derived NCP, net primary production (NPP) or Chl a to compare which biological proxy produces the most accurate fields of pCO2 (sw). Estimates of pCO2 (sw) using NCP, NPP or Chl a were similar, but NCP was more accurate for the Amazon Plume and upwelling regions, which were not fully reproduced when using Chl a or NPP. A perturbation analysis assessed the potential maximum reduction in pCO2 (sw) uncertainties that could be achieved by reducing the uncertainties in the satellite biological parameters. This illustrated further improvement using NCP compared to NPP or Chl a. Using NCP to estimate pCO2 (sw) showed that the South Atlantic Ocean is a CO2 source, whereas if no biological parameters are used in the FNN (following existing annual carbon assessments), this region appears to be a sink for CO2. These results highlight that using NCP improved the accuracy of estimating pCO2 (sw) and changes the South Atlantic Ocean from a CO2 sink to a source. Reducing the uncertainties in NCP derived from satellite parameters will ultimately improve our understanding and confidence in quantification of the global ocean as a CO2 sink.

2021 ◽  
Author(s):  
Daniel Ford ◽  
Gavin H. Tilstone ◽  
Jamie D. Shutler ◽  
Vassilis Kitidis

Abstract. A key step in assessing the global carbon budget is the determination of the partial pressure of CO2 in seawater (pCO2 (sw)). Spatially complete observational fields of pCO2 (sw)  are routinely produced for regional and global ocean carbon budget assessments by extrapolating sparse in situ measurements of pCO2 (sw) using satellite observations. Within these schemes, satellite chlorophyll a (Chl a) is often used as a proxy for the biological drawdown or release of CO2. Chl a does not however quantify carbon fixed through photosynthesis and then respired, which is determined by net community production (NCP). In this study, pCO2 (sw) over the South Atlantic Ocean is estimated using a feed forward neural network (FNN) scheme and either satellite derived NCP, net primary production (NPP) or Chl a to compare which biological proxy is the most accurate. Estimates of pCO2 (sw)  using NCP, NPP or Chl a were similar, but NCP was more accurate for the Amazon Plume and upwelling regions, which were not fully reproduced when using Chl a or NPP. Reducing the uncertainties in the satellite biological parameters to estimate pCO2 (sw), illustrated further improvement and greater differences for NCP compared to NPP or Chl a. Using NCP to estimate pCO2 (sw) showed that the South Atlantic Ocean is a CO2 source, whereas if no biological parameters are used in the FNN (following existing annual carbon assessments), this region becomes a sink for CO2. These results highlight that using NCP improved the accuracy of estimating pCO2 (sw), and changes the South Atlantic Ocean from a CO2 sink to a source. Reducing the uncertainties in NCP derived from satellite parameters will further improve our ability to quantify the global ocean CO2 sink.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 84 ◽  
Author(s):  
Iole B. M. Orselli ◽  
Catherine Goyet ◽  
Rodrigo Kerr ◽  
José L. L. de Azevedo ◽  
Moacyr Araujo ◽  
...  

The South Atlantic Ocean is currently undergoing significant alterations due to climate change. This region is important to the global carbon cycle, but marine carbon data are scarce in this basin. Additionally, this region is influenced by Agulhas eddies. However, their effects on ocean biogeochemistry are not yet fully understood. Thus, we aimed to model the carbonate parameters in this region and investigate the anthropogenic carbon (Cant) content in 13 eddies shed by the Agulhas retroflection. We used in situ data from the CLIVAR/WOCE/A10 section to elaborate total dissolved inorganic carbon (CT) and total alkalinity (AT) models and reconstruct those parameters using in situ data from two other Brazilian initiatives. Furthermore, we applied the Tracer combining Oxygen, inorganic Carbon, and total Alkalinity (TrOCA) method to calculate the Cant, focusing on the 13 identified Agulhas eddies. The CT and AT models presented root mean square errors less than 1.66 and 2.19 μmol kg−1, indicating Global Ocean Acidification Observing Network climate precision. The Cant content in the Agulhas eddies was 23% higher than that at the same depths of the surrounding waters. We observed that Agulhas eddies can play a role in the faster acidification of the South Atlantic Central Water.


2021 ◽  
Vol 260 ◽  
pp. 112435
Author(s):  
Daniel Ford ◽  
Gavin H. Tilstone ◽  
Jamie D. Shutler ◽  
Vassilis Kitidis ◽  
Polina Lobanova ◽  
...  

2003 ◽  
Vol 30 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Pierre Florenchie ◽  
Johann R. E. Lutjeharms ◽  
C. J. C. Reason ◽  
S. Masson ◽  
M. Rouault

Sign in / Sign up

Export Citation Format

Share Document