physiological parameters
Recently Published Documents


TOTAL DOCUMENTS

2237
(FIVE YEARS 735)

H-INDEX

51
(FIVE YEARS 8)

2022 ◽  
Vol 151 ◽  
pp. 106887
Author(s):  
Manoj Kumar ◽  
Osamu Matoba ◽  
Xiangyu Quan ◽  
Sudheesh K Rajput ◽  
Mitsuhiro Morita ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Federico H. Larrosa ◽  
Lucas Borrás

Altered stand density affects maize yields by producing changes in both numerical yield components, kernel number per plant (KNP), and kernel weight (KW). Kernel number is determined by the accumulation of ear biomass during the flowering period, whereas KW is determined by the sink potential established during flowering and the capacity of the plant to fulfill this potential during effective grain filling. Here, we tested if different short shading treatments during different stages around flowering can help discriminate genotypic differences in eco-physiological parameters relevant for maize stand density yield response and associated yield components. Our specific objectives were to: (i) identify hybrids with differential shading stress response, (ii) explore shading effects over eco-physiological parameters mechanistically related to KNP and KW, and (iii) test if shading stress can be used for detecting differential genotypic yield responses to stand density. The objectives were tested using four commercial maize hybrids. Results indicated that KNP was the yield component most related to yield changes across the different shading treatments, and that the specific shading imposed soon after anthesis generated the highest yield reductions. Hybrids less sensitive to shading stress were those that reduced their plant growth rate the least and the ones that accumulated more ear biomass during flowering. Genotype susceptibility to shading stress around flowering was correlated to stand density responses. This indicated that specific shading stress treatments are a useful tool to phenotype for differential stand density responses of commercial hybrids.


Spinal Cord ◽  
2022 ◽  
Author(s):  
Stephany Fernandes Da Rocha Rodrigues ◽  
Jose Ignácio Priego Quesada ◽  
Luiz Henrique Batista Rufino ◽  
Valter Barbosa Filho ◽  
Mateus Rossato

Author(s):  
Maxim E. Darvin ◽  
Johannes Schleusener ◽  
Jürgen Lademann ◽  
Chun-Sik Choe

Confocal Raman microspectroscopy is widely used in dermatology and cosmetology for analysis of the concentration of skin components (lipids, natural moisturizing factor molecules, water) and the penetration depth of cosmetic/medical formulations in the human stratum corneum (SC) in vivo. In recent years, it was shown that confocal Raman microspectroscopy can also be used for non-invasive in vivo depth-dependent determination of the physiological parameters of the SC, such as lamellar and lateral organization of intercellular lipids, folding properties of keratin, water mobility and hydrogen bonding states. The results showed that the strongest skin barrier function, which is primarily manifested by the orthorhombic organization of intercellular lipids, is provided at ≈20–40% SC depth, which is related to the maximal bonding state of water with surrounding components in the SC. The secondary and tertiary structures of keratin determine water binding in the SC, which is depth-dependent. This paper shows the technical possibility and advantage of confocal Raman microspectroscopy in non-invasive investigation of the skin and summarizes recent results on in vivo investigation of the human SC.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jie Yang ◽  
Hu Tan ◽  
Mengjia Sun ◽  
Renzheng Chen ◽  
Jihang Zhang ◽  
...  

Insufficient cardiorespiratory compensation is closely associated with acute hypoxic symptoms and high-altitude (HA) cardiovascular events. To avoid such adverse events, predicting HA cardiorespiratory fitness impairment (HA-CRFi) is clinically important. However, to date, there is insufficient information regarding the prediction of HA-CRFi. In this study, we aimed to formulate a protocol to predict individuals at risk of HA-CRFi. We recruited 246 volunteers who were transported to Lhasa (HA, 3,700 m) from Chengdu (the sea level [SL], <500 m) through an airplane. Physiological parameters at rest and during post-submaximal exercise, as well as cardiorespiratory fitness at HA and SL, were measured. Logistic regression and receiver operating characteristic (ROC) curve analyses were employed to predict HA-CRFi. We analyzed 66 pulmonary vascular function and hypoxia-inducible factor- (HIF-) related polymorphisms associated with HA-CRFi. To increase the prediction accuracy, we used a combination model including physiological parameters and genetic information to predict HA-CRFi. The oxygen saturation (SpO2) of post-submaximal exercise at SL and EPAS1 rs13419896-A and EGLN1 rs508618-G variants were associated with HA-CRFi (SpO2, area under the curve (AUC) = 0.736, cutoff = 95.5%, p < 0.001; EPAS1 A and EGLN1 G, odds ratio [OR] = 12.02, 95% CI = 4.84–29.85, p < 0.001). A combination model including the two risk factors—post-submaximal exercise SpO2 at SL of <95.5% and the presence of EPAS1 rs13419896-A and EGLN1 rs508618-G variants—was significantly more effective and accurate in predicting HA-CRFi (OR = 19.62, 95% CI = 6.42–59.94, p < 0.001). Our study employed a combination of genetic information and the physiological parameters of post-submaximal exercise at SL to predict HA-CRFi. Based on the optimized prediction model, our findings could identify individuals at a high risk of HA-CRFi in an early stage and reduce cardiovascular events.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Long Cheng

The promotion of ice and snow sports not only provides professional athletes for the Winter Olympics but also acts as appreciative mass bases for ice and snow sports. The appearance of ice and snow sports will bring a new consumption pattern and develop a new ice and snow industry. In this paper, an Internet of Things (IoT)-based sports information collection system which is specifically designed and developed for the healthcare domain specifically in the snow and ice sports is proposed. The physiological parameters such as body temperature, ECG, blood pressure, blood sugar, and blood oxygen saturation are captured through various monitoring devices. These physiological parameters are transmitted to the mobile device by the wireless module and mobile device that receives and displays these physiological parameters. A complete hardware design of the whole ice and snow sports health and sports information acquisition system, which is based on the Internet of Things, is given, and then, there is the overall design scheme of the system, such as adopted modular design for the system, attitude measurement unit, UWB positioning unit, data storage, and communication unit, respectively. The measurement results of the professional medical equipment are compared with those of acquisition equipment in real environment of ice and sports. These results have verified accuracy of data collected by acquisition equipment and meet the design requirements of the proposed system.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Margareta Bego ◽  
Nikunjkumar Patel ◽  
Rodrigo Cristofoletti ◽  
Amin Rostami-Hodjegan

AbstractWhile the concept of ‘Virtual Bioequivalence’ (VBE) using a combination of modelling, in vitro tests and integration of pre-existing data on systems and drugs is growing from its infancy, building confidence on VBE outcomes requires demonstration of its ability not only in predicting formulation-dependent systemic exposure but also the expected degree of population variability. The concept of variation influencing the outcome of BE, despite being hidden with the cross-over nature of common BE studies, becomes evident when dealing with the acceptance criteria that consider the 90% confidence interval (CI) around the relative bioavailability. Hence, clinical studies comparing a reference product against itself may fail due to within-subject variations associated with the two occasions that the individual receives the same formulation. In this proof-of-concept study, we offer strategies to capture the most realistic predictions of CI around the pharmacokinetic parameters by propagating physiological variations through physiologically based pharmacokinetic modelling. The exercise indicates feasibility of the approach based on comparisons made between the simulated and observed WSV of pharmacokinetic parameters tested for a clinical bioequivalence case study. However, it also indicates that capturing WSV of a large array of physiological parameters using backward translation modelling from repeated BE studies of reference products would require a diverse set of drugs and formulations. The current case study of delayed-release formulation of posaconazole was able to declare certain combinations of WSV of physiological parameters as ‘not plausible’. The eliminated sets of WSV values would be applicable to PBPK models of other drugs and formulations.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 120
Author(s):  
Tânia Martins ◽  
Paula Alexandra Oliveira ◽  
Maria João Pires ◽  
Maria João Neuparth ◽  
Germano Lanzarin ◽  
...  

Brassica by-products are a source of natural bioactive molecules such as glucosinolates and isothiocyanates, with potential applications in the nutraceutical and functional food industries. However, the effects of oral sub-chronic exposure to broccoli by-product flour (BF) have not yet been evaluated. The objective of this pilot study was to analyse the effects of BF intake in the physiological parameters of FVB/N mice fed a 6.7% BF-supplemented diet for 21 days. Glucosinolates and their derivatives were also quantified in plasma and urine. BF supplementation significantly decreased (p < 0.05) the accumulation of perirenal adipose tissue. Furthermore, mice supplemented with BF showed significantly lower (p < 0.01) microhematocrit values than control animals, but no impact on the general genotoxicological status nor relevant toxic effects on the liver and kidney were observed. Concerning hepatic and renal antioxidant response, BF supplementation induced a significant increase (p < 0.05) in the liver glutathione S-transferase (GST) levels. In BF-supplemented mice, plasma analysis revealed the presence of the glucosinolates glucobrassicin and glucoerucin, and the isothiocyanates sulforaphane and indole-3-carbinol. Overall, these results show that daily intake of a high dose of BF during three weeks is safe, and enables the bioavailability of beneficial glucosinolates and isothiocyanates. These results allow further testing of the benefits of this BF in animal models of disease, knowing that exposure of up to 6.7% BF does not present relevant toxicity.


2022 ◽  
pp. 103737
Author(s):  
Jia-Qi Liang ◽  
Qin Leng ◽  
Daianne F. Höfig ◽  
Gao Niu ◽  
Li Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document