anthropogenic carbon
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 75)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
O.E. Babalola ◽  
Paul O. Awoyera ◽  
D.H. Le ◽  
Oladimeji B. Olalusi ◽  
S.K. Bhagat

The effects of corrosion on the reinforced concrete structure due to carbonation affect its operation life. The research work considers a major critical component causing global warming as it studies the links between reinforced concrete deterioration mechanisms and anthropogenic carbon aerosol (black carbon soot) emissions in the atmosphere. Experimental tests were carried out to study the effect of carbonation caused by the emission of black carbon soot on mechanical properties and durability of reinforced concrete. Mass concrete and reinforced concrete prepared with Ordinary Portland cement (OPC) in water/cement ratios ranging from 0.45 to 0.65 were used to produce concrete samples. Compressive strength tests, tensile strength test, and carbonation depth tests were carried out on concrete to determine its level of deterioration following the carbonation effect. The carbonation chamber was prepared with carbon soot of different concentrations to simulate different levels of black carbon soot in the atmosphere. Results showed that concrete compressive strength was not totally affected by carbonation, but there was reduction in the tensile strength of reinforcing steel. The carbonation depth was observed to progress deeper into the concrete with a longer duration of exposure to carbonation agents in the chamber. The result of this study will serve as a guide during concrete installations.


2021 ◽  
Vol 114 (sp1) ◽  
Author(s):  
Avrionesti ◽  
Wawan Hermawan ◽  
Mutiara R. Putri ◽  
Hanif Diastomo ◽  
Mochamad Riam Badriana ◽  
...  

2021 ◽  
Author(s):  
Laurie Menviel ◽  
Darryn W. Waugh ◽  
Paul Spence ◽  
Matt Chamberlain ◽  
Veronique Lago ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Richard Engelen ◽  
Daniel Thiemert ◽  
Anna Agusti-Panareda ◽  
Nicolas Bousserez ◽  
...  

The Paris Agreement of the United Nations Framework Convention on Climate Change is a binding international treaty signed by 196 nations to limit their greenhouse gas emissions through ever-reducing Nationally Determined Contributions and a system of 5-yearly Global Stocktakes in an Enhanced Transparency Framework. To support this process, the European Commission initiated the design and development of a new Copernicus service element that will use Earth observations mainly to monitor anthropogenic carbon dioxide (CO2) emissions. The CO2 Human Emissions (CHE) project has been successfully coordinating efforts of its 22 consortium partners, to advance the development of a European CO2 monitoring and verification support (CO2MVS) capacity for anthropogenic CO2 emissions. Several project achievements are presented and discussed here as examples. The CHE project has developed an enhanced capability to produce global, regional and local CO2 simulations, with a focus on the representation of anthropogenic sources. The project has achieved advances towards a CO2 global inversion capability at high resolution to connect atmospheric concentrations to surface emissions. CHE has also demonstrated the use of Earth observations (satellite and ground-based) as well as proxy data for human activity to constrain uncertainties and to enhance the timeliness of CO2 monitoring. High-resolution global simulations (at 9 km) covering the whole of 2015 (labelled CHE nature runs) fed regional and local simulations over Europe (at 5 km and 1 km resolution) and supported the generation of synthetic satellite observations simulating the contribution of a future dedicated Copernicus CO2 Monitoring Mission (CO2M).


2021 ◽  
Author(s):  
Yannig Durand ◽  
Grégory Bazalgette Courrèges-Lacoste ◽  
Charlotte Pachot ◽  
Luc Boucher ◽  
Arnaud Pasquet ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianbin Tao ◽  
XiangBing Kong

AbstractA gridded social-economic data is essential for geoscience analysis and multidisciplinary application. Spatial allocation of carbon dioxide statistics data is an important issue in the context of global climate change, which involves the carbon emissions accounting and decomposition of responsibility for carbon emission reductions. In this research a new spatial allocation method for non-point source anthropogenic carbon dioxide emissions (ACDE) fusing multi-source data using Bayesian Network (BN) was introduced. In addition to common-used DMSP (Defense Meteorological Satellite Program), PD (population density) and GDP (Gross Domestic Production) data, the land cover and vegetation data was imported into the model as prior knowledge to optimize the model fitting. The prior knowledge here was based on the understanding that ACDE was dominated by human activities and has strong correlations with land cover and vegetation conditions. A 1 km gridded ACDE map integrated emissions form point-source and non-point source was generated and validated. The model predicts ACDE with high accuracies and great improvement can be observed when fusing land cover and vegetation as prior knowledge. The model can achieve successful statistics data downscaling on national scale provided adequate sample data are available, offering a novel method for ACDE accounting in China.


2021 ◽  
Vol 18 (17) ◽  
pp. 4985-5010 ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Alexis Hannart ◽  
Stephen Sitch ◽  
Vanessa Haverd ◽  
...  

Abstract. Satellite data reveal widespread changes in Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climate change, and consequent disturbances such as fires and droughts, are hypothesized to be key drivers of changes in natural vegetation. A rigorous regional attribution at the biome level that can be scaled to a global picture of what is behind the observed changes is currently lacking. Here we analyze different datasets of decades-long satellite observations of global leaf area index (LAI, 1981–2017) as well as other proxies for vegetation changes and identify several clusters of significant long-term changes. Using process-based model simulations (Earth system and land surface models), we disentangle the effects of anthropogenic carbon emissions on LAI in a probabilistic setting applying causal counterfactual theory. The analysis prominently indicates the effects of climate change on many biomes – warming in northern ecosystems (greening) and rainfall anomalies in tropical biomes (browning). The probabilistic attribution method clearly identifies the CO2 fertilization effect as the dominant driver in only two biomes, the temperate forests and cool grasslands, challenging the view of a dominant global-scale effect. Altogether, our analysis reveals a slowing down of greening and strengthening of browning trends, particularly in the last 2 decades. Most models substantially underestimate the emerging vegetation browning, especially in the tropical rainforests. Leaf area loss in these productive ecosystems could be an early indicator of a slowdown in the terrestrial carbon sink. Models need to account for this effect to realize plausible climate projections of the 21st century.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katie E. Lotterhos ◽  
Áki J. Láruson ◽  
Li-Qing Jiang

AbstractMarine ecosystems are experiencing unprecedented warming and acidification caused by anthropogenic carbon dioxide. For the global sea surface, we quantified the degree that present climates are disappearing and novel climates (without recent analogs) are emerging, spanning from 1800 through different emission scenarios to 2100. We quantified the sea surface environment based on model estimates of carbonate chemistry and temperature. Between 1800 and 2000, no gridpoints on the ocean surface were estimated to have experienced an extreme degree of global disappearance or novelty. In other words, the majority of environmental shifts since 1800 were not novel, which is consistent with evidence that marine species have been able to track shifting environments via dispersal. However, between 2000 and 2100 under Representative Concentrations Pathway (RCP) 4.5 and 8.5 projections, 10–82% of the surface ocean is estimated to experience an extreme degree of global novelty. Additionally, 35–95% of the surface ocean is estimated to experience an extreme degree of global disappearance. These upward estimates of climate novelty and disappearance are larger than those predicted for terrestrial systems. Without mitigation, many species will face rapidly disappearing or novel climates that cannot be outpaced by dispersal and may require evolutionary adaptation to keep pace.


2021 ◽  
Author(s):  
Sarah Schlunegger ◽  
Keith Rodgers ◽  
Burke Hales ◽  
John Dunne ◽  
Masao Ishii ◽  
...  

Abstract The invasion of anthropogenic carbon into the global ocean poses an existential threat to calcifying marine organisms1–4. Observations indicate that conditions corrosive to aragonite shells, unprecedented in the surface ocean, are already occurring in mesoscale upwelling features of the North Pacific2,5,6 and Southern Ocean7, and modeling experiments indicate that large volumes of the global ocean8 including the polar ocean’s surface might become corrosive to aragonite by 20304,9–13. Such changes are expected to compress important marine habitats, but the pathways by which habitat compression manifests over global scales, and their sensitivity to mitigation, remain unexplored. Using a suite of large ensemble projections from an Earth system model14,15, we assess the effectiveness of climate mitigation for averting habitat loss at the ecologically-critical horizon of the base of the ocean’s euphotic zone. We find that without mitigation, 40-42% of this sensitive horizon experiences conditions corrosive to aragonite by 2100, with moderate mitigation this reduces to 16-19%, and with aggressive mitigation to 6-7%. Mitigation has a stronger effect on the eastern relative to western domains of the northern extratropical ocean with some of the greatest benefits in the ocean’s most productive Large Marine Ecosystems, including the California Current and Gulf of Alaska. This work reveals the significant impact that mitigation efforts compatible with the Paris Agreement target of 1.5°C could have upon preserving marine habitats that are vulnerable to ocean acidification.


2021 ◽  
Author(s):  
Peter J. Brown ◽  
Elaine L. McDonagh ◽  
Richard Sanders ◽  
Andrew J. Watson ◽  
Rik Wanninkhof ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document