scholarly journals Supplementary material to "Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modelling approach using C-GEM"

Author(s):  
Xi Wei ◽  
Josette Garnier ◽  
Vincent Thieu ◽  
Paul Passy ◽  
Romain Le Gendre ◽  
...  
1998 ◽  
Vol 70 (5) ◽  
pp. 997-1004 ◽  
Author(s):  
D.M. Sumner ◽  
D.E. Rolston ◽  
L.A. Bradner

2016 ◽  
Author(s):  
Thibault Lambert ◽  
Cristian R. Teodoru ◽  
Frank C. Nyoni ◽  
Steven Bouillon ◽  
François Darchambeau ◽  
...  

2021 ◽  
pp. SP507-2020-207
Author(s):  
V. Daux ◽  
B. Minster ◽  
A. Cauquoin ◽  
O. Jossoud ◽  
M. Werner ◽  
...  

AbstractThe isotopic composition of oxygen (δ18O), and hydrogen (δ2H) are widely used to locate the geographical origin of biological remains or manufactured products. In this paper, we analyze the distributions of δ18O and δ2H in tap waters sampled across France, and in precipitation interpolated with OIPC and modelled with the isotope-enabled ECHAM6-wiso model. Our aim is to provide isoscapes usable in archaeology and forensics and evaluate if modelled data could be surrogates for measured ones.The δ18O and δ2H in the 396 tap waters sampled vary spatially within a range of 10‰ and 77‰ respectively. Their consistent distributions follow rules summarized by the effects of altitude and distance from the coast. Their variations along the year are small. Therefore, the database provides a solid reference for δ18O and δ2H of the water supply system at the regional scale. The areas with the most uncommon oxygen and hydrogen isotopic compositions (Atlantic coast South of Brittany and the highest elevations in the Alps) are the most accurately traceable areas in provenancing studies.The isotopic compositions of modelled precipitation have the same spatial distributions but different absolute values from those of tap waters. Therefore, our results favour the use of statistical isoscapes rather than GCM-based isoscapes in provenancing studies.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5256034


2011 ◽  
Vol 8 (65) ◽  
pp. 1760-1771 ◽  
Author(s):  
Christopher R. Sweet ◽  
Santanu Chatterjee ◽  
Zhiliang Xu ◽  
Katharine Bisordi ◽  
Elliot D. Rosen ◽  
...  

In this paper, a new three-dimensional modelling approach is described for studying fluid–viscoelastic cell interaction, the subcellular element Langevin (SCEL) method, with cells modelled by subcellular elements (SCEs) and SCE cells coupled with fluid flow and substrate models by using the Langevin equation. It is demonstrated that: (i) the new method is computationally efficient, scaling as 𝒪( N ) for N SCEs; (ii) cell geometry, stiffness and adhesivity can be modelled by directly relating parameters to experimentally measured values; (iii) modelling the fluid–platelet interface as a surface leads to a very good correlation with experimentally observed platelet flow interactions. Using this method, the three-dimensional motion of a viscoelastic platelet in a shear blood flow was simulated and compared with experiments on tracking platelets in a blood chamber. It is shown that the complex platelet-flipping dynamics under linear shear flows can be accurately recovered with the SCEL model when compared with the experiments. All experimental details and electronic supplementary material are archived at http://biomath.math.nd.edu/scelsupplementaryinformation/.


2017 ◽  
Author(s):  
Emil Kristensen ◽  
Mikkel Madsen-Østerbye ◽  
Philippe Massicotte ◽  
Ole Pedersen ◽  
Stiig Markager ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document