scholarly journals Yanchilina et al., “Lack of marine entry into Marmara and Black Sea-lakes indicate low relative sea level during MIS 3 in the Northeastern Mediterranean”.

2019 ◽  
Author(s):  
Anonymous
Keyword(s):  
2019 ◽  
Author(s):  
Anastasia G. Yanchilina ◽  
Celine Grall ◽  
William B. F. Ryan ◽  
Jerry F. McManus ◽  
Candace O. Major

Abstract. The Marine Isotope Stage 3 (MIS 3) is considered a period of persistent and rapid climate and sea level variabilities during which eustatic sea level is observed to have varied by tens of meters. Constraints on local sea level during this time are critical for further estimates of these variabilities. We here present constraints on relative sea level in the Marmara and Black Sea regions in the northeastern Mediterranean, inferred from reconstructions of the history of the connections and disconnections (partial or total) of these seas together with the global ocean. We use a set of independent data from seismic imaging and core-analyses to infer that the Marmara and Black Seas remained connected persistent freshwater lakes that outflowed to the global ocean during the majority of MIS 3. Marine water intrusion during the early MIS-3 stage may have occurred into the Marmara Sea-Lake but not the Black Sea-Lake. This suggests that the relative sea level was near the paleo-elevation of the Bosporus sill and possibly slightly above the Dardanelles paleo-elevation, ~80 mbsl. The Eustatic sea level may have been even lower, considering the isostatic effects of the Eurasian ice sheet would have locally uplifted the topography of the northeastern Mediterrranean.


Author(s):  
N. B. Avsar ◽  
S. H. Kutoglu

<p><strong>Abstract.</strong> Potential sea level rise poses a significant threat to low-lying areas. Considering present and future of coastal areas, scientific study of sea level rise is an essential for adapting to sea level extremes. In this study, the relative sea level change in the Black Sea were investigated using data of 12 tide-gauge and 6 GNSS stations. Results generally indicated sea level rise along the Black Sea coast. Only at Bourgas tide-gauge station, a sea level fall was detected. A significant sea level change were not determined at Sinop tide-gauge station. On the other hand, at some stations such as Poti and Sile, ground subsidence contribution to relative sea level changes were observed.</p>


2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


Sign in / Sign up

Export Citation Format

Share Document