scholarly journals Review of “Volcanic imprint in the North Atlantic climate variability as recorded by stable water isotopes of Greenland ice cores”

2019 ◽  
Author(s):  
Anonymous
2018 ◽  
Vol 10 (4) ◽  
pp. 2329-2344 ◽  
Author(s):  
Laia Comas-Bru ◽  
Armand Hernández

Abstract. Climate variability in the North Atlantic sector is commonly ascribed to the North Atlantic Oscillation. However, recent studies have shown that taking into account the second and third mode of variability (namely the East Atlantic – EA – and the Scandinavian – SCA – patterns) greatly improves our understanding of their controlling mechanisms, as well as their impact on climate. The most commonly used EA and SCA indices span the period from 1950 to present, which is too short, for example, to calibrate palaeoclimate records or assess their variability over multi-decadal scales. To tackle this, here, we create new EOF-based (empirical orthogonal function) monthly EA and SCA indices covering the period from 1851 to present, and compare them with their equivalent instrumental indices. We also review and discuss the value of these new records and provide insights into the reasons why different sources of data may give slightly different time series. Furthermore, we demonstrate that using these patterns to explain climate variability beyond the winter season needs to be done carefully due to their non-stationary behaviour. The datasets are available at https://doi.org/10.1594/PANGAEA.892769.


2021 ◽  
Author(s):  
Svetlana Radionovskaya ◽  
Luke Skinner ◽  
Mervyn Greaves

<p>MIS 4, a key paleoclimatic interval for the last glacial inception, is characterized by a rapid CO<sub>2</sub> drop of approx. ~28ppm and a large drop in temperature (as seen in Antarctic ice cores). SSTs in the North Atlantic are thought to be coupled to AMOC strength, whereby various proxies suggest a weaker and shoaled AMOC during the transition from MIS5a to MIS4. Furthermore, several millennial events also occurred during MIS 4, including Heinrich Stadial 6 and DO events 16-19. MIS 4 is thus an ideal interval to study and eventually to disentangle, glacial-interglacial and millennial variability.</p><p>Here, we present high resolution planktonic and benthic foraminifera geochemical data from several marine sediment cores from the Iberian Margin (including stable isotope and trace element data). The Iberian Margin is a prime location to study millennial-scale climate variability as isotope records of planktonic and benthic foraminifera simultaneously recorded rapid climate change expressed in Greenland and Antarctic ice cores, respectively, during the last glacial period. However, our results so far, suggest that surface ocean response at this site does not track Greenland temperature, as would be expected for this region of the North Atlantic. Perhaps the most striking, our planktic Mg/Ca record shows a late onset of rapid MIS 4 cooling at the start of Heinrich 6, and no clear millennial variability signal. This is in agreement with SST reconstructed using alkenones (Pailler and Bard, 2002) and planktonic foraminifera faunal assemblages (Salgueiro et al., 2010) from nearby core sites. Local d18O seawater reconstructions imply major hydrological changes in the region, which is supported by the “dry event” seen in speleothems from North Eastern Iberia (Perez-Mehias et al., 2019) and Italy (Columbu et al., 2020), just before Heinrich 6. We propose that the observed changes may reflect changes in regional ocean and atmospheric circulation patterns such as the interaction of the strength and position of the Azores Current, Iberian Poleward Current and the Subtropical Gyre, which in turn could depend on the larger scale AMOC and wind driven surface ocean changes due to glacial-interglacial and millennial variability. Further links to moisture transport, ice sheet growth and carbon cycle are yet to be investigated.</p><p> </p><p><strong>References</strong></p><p>Columbu, A., Chiarini, V., Spötl, C., Benazzi, S., Hellstrom, J., Cheng, H. and De Waele, J., 2020. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nature Ecology & Evolution, 4(9), pp.1188-1195.</p><p>Pailler, D. and Bard, E., 2002. High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(4), pp.431-452.</p><p>Pérez-Mejías, C., Moreno, A., Sancho, C., Martín-García, R., Spötl, C., Cacho, I., Cheng, H. and Edwards, R., 2019. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. Quaternary Science Reviews, 224, p.105946.</p><p>Salgueiro, E., Voelker, A., de Abreu, L., Abrantes, F., Meggers, H. and Wefer, G., 2010. Temperature and productivity changes off the western Iberian margin during the last 150 ky. Quaternary Science Reviews, 29(5-6), pp.680-695.</p>


2020 ◽  
Author(s):  
Hera Guðlaugsdóttir ◽  
Jesper Sjolte ◽  
Árný Erla Sveinbjörnsdóttir ◽  
Hans Christian Steen-Larsen

Abstract Volcanic eruptions are important drivers of climate variability on both seasonal and multi-decadal time scales as a result of atmosphere-ocean coupling. While the direct response after equatorial eruptions emerges as the positive phase of the North Atlantic Oscillation in the first two years after an eruption, less is known about high latitude northern hemisphere eruptions. In this study we assess the difference between equatorial and high latitude volcanic eruptions through the reconstructed atmospheric circulation and stable water isotope records of Greenland ice cores for the last millennia (1241-1979 CE), where the coupling mechanism behind the long-term response is addressed. The atmospheric circulation is studied through the four main modes of climate variability in the North Atlantic, the Atlantic Ridge, Scandinavian Blocking and the positive and negative phase of the North Atlantic Oscillation. We report a difference in the atmospheric circulation response after high latitude eruptions compared to the response after equatorial eruptions, where the positive phase of the North Atlantic Oscillation and the Atlantic Ridge seem to be more associated with equatorial eruptions while the negative phase of the North Atlantic Oscillation seems to follow high latitude eruptions. This response is present during the first five years and then again in years 8-12 after both equatorial and high latitude eruptions. Such a prolonged response is evidence of an ocean-atmosphere coupling that is initiated through different mechanisms, where we suspect sea ice to play a key role.


2019 ◽  
Author(s):  
Hera Guðlaugsdóttir ◽  
Jesper Sjolte ◽  
Árný Erla Sveinbjörnsdóttir ◽  
Hans Christian Steen-Larsen

Abstract. Volcanic eruptions are important drivers of climate variability on both seasonal and multi-decadal time scales as a result of atmosphere-ocean coupling. While the direct response after equatorial eruptions emerges as the positive phase of the North Atlantic Oscillation in the first two years after an eruption, less is known about high latitude northern hemisphere eruptions. In this study we assess the difference between equatorial and high latitude volcanic eruptions through the reconstructed atmospheric circulation and stable water isotope records of Greenland ice cores for the last millennia (1241–1979 CE), where the coupling mechanism behind the long-term response is addressed. The atmospheric circulation is studied through the four main modes of climate variability in the North Atlantic, the Atlanti Ridge (AtR), Scandinavian Blocking (ScB) and the positive and negative phase of the North Atlantic Oscillation (NAO+/NAO−). We report a difference in the atmospheric circulation response after equatorial eruptions compared to the response after high latitude eruptions, where NAO+ and AtR seem to be more associated with equatorial eruptions while NAO- and ScB seems to follow high latitude eruptions. This response is present during the first five years and then again in years 8–12 after both equatorial and high latitude eruptions. Such a prolonged response is evidence of an ocean-atmosphere coupling that is initiated through different mechanisms, where we suspect sea ice to play a key role.


2018 ◽  
Author(s):  
Laia Comas-Bru ◽  
Armand Hernández

Abstract. Climate variability in the North Atlantic sector is commonly ascribed to the North Atlantic Oscillation. However, recent studies have shown that taking into account the second and third mode of variability (namely the East Atlantic – EA – and the Scandinavian – SCA – patterns) greatly improves our understanding of their controlling mechanisms, as well as their impact on climate. The most commonly used EA and SCA indices span the period from 1950 to present which is too short, for example, to calibrate palaeoclimate records or assess their variability over multi-decadal scales. To tackle this, here, we create new EOF-based monthly EA and SCA indices covering the period from 1851 to present; and compare them with their equivalent instrumental indices. We also review and discuss the value of these new records and provide insights into the reasons why different sources of data may give slightly different time-series. Furthermore, we demonstrate that using these patterns to explain climate variability beyond the winter season needs to be done carefully due to their non-stationary behaviour. The datasets are available at https://doi.pangaea.de/10.1594/PANGAEA.892769.


2019 ◽  
Vol 159 ◽  
pp. 143-151 ◽  
Author(s):  
Athanassios C. Tsikliras ◽  
Priscilla Licandro ◽  
Androniki Pardalou ◽  
Ian H. McQuinn ◽  
Joachim P. Gröger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document