water isotopes
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 133)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yvonne Sena Akosua Loh ◽  
Obed Fiifi Fynn ◽  
Evans Manu ◽  
George Yamoah Afrifa ◽  
Millicent Obeng Addai ◽  
...  

Abstract The relationship between groundwater and surface water in the Lake Bosumtwi impact crater has been assessed using hydrochemical data and stable water isotopes of δ18O and δD. This study aimed to define likely groundwater flow and recharge zones, estimate the rate of evaporation, and examine the relationship between the lake and groundwater in the study area. The results of Q-Mode hierarchical cluster analysis (HCA) clearly differentiate the lake water from the groundwater based on their spatial relationship. These preliminary results indicated that groundwater recharge occurs on the hilltops of the crater, where it is slightly acidic with low levels of dissolved minerals, characterized by short residence time and rapid unrestricted vertical infiltration and recharge. The groundwater becomes more mineralized with longer contact times and deeper circulation with the host rock, while it flows from the recharge areas towards the lake at lower elevations. Analyses of stable water isotopes of δ18O and δD showed a high evaporation rate on the lake surface, of ~90% with a relatively significant evaporative enrichment, whereas groundwater showed a relatively lower evaporation rate ranging between 54-60%. Both reservoirs do not appear to be hydraulically connected, and where such a connection exists, it is expected to favour the lake.


2022 ◽  
Author(s):  
Eric W. Wolff ◽  
Hubertus Fischer ◽  
Tas van Ommen ◽  
David A. Hodell

Abstract. The international ice core community has a target to obtain continuous ice cores stretching back as far as 1.5 million years. This would provide vital data (including a CO2 profile) allowing us to assess ideas about the cause of the Mid-Pleistocene Transition (MPT). The European Beyond EPICA project and the Australian Million Year Ice Core project each plan to drill such a core in the region known as Little Dome C. Dating the cores will be challenging, and one approach will be to match some of the records obtained with existing marine sediment datasets, informed by similarities in the existing 800 kyr period. Water isotopes in Antarctica have been shown to closely mirror deepwater temperature, estimated from Mg / Ca ratios of benthic foraminifera, in a marine core on the Chatham Rise near to New Zealand. The dust record in ice cores resembles very closely a South Atlantic marine record of iron accumulation rate. By assuming these relationships continue beyond 800 ka, our ice core record could be synchronised to dated marine sediments. This could be supplemented, and allow synchronisation at higher resolution, by the identification of rapid millennial scale-events that are observed both in Antarctic methane records and in emerging records of planktic oxygen isotopes and alkenone sea surface temperature (SST) from the Portuguese Margin. Although published data remain quite sparse, it should also be possible to match 10Be from ice cores to records of geomagnetic palaeointensity and authigenic 10Be/9Be in marine sediments. However, there are a number of issues that have to be resolved before the ice core 10Be record can be used. The approach of matching records to a template will be most successful if the new core is in stratigraphic order, but should also provide constraints on disordered records, if used in combination with absolute radiogenic ages.


2022 ◽  
Vol 12 (2) ◽  
pp. 625
Author(s):  
Tatyana Papina ◽  
Alla Eirikh ◽  
Tatiana Noskova

Stable water isotopes in snowpack and snowfalls are widely used for understanding hydrological processes occurring in the seasonally snow-covered territories. The present study examines the main factors influencing changes of the initial stable water isotopes composition in the seasonal snow cover of the south of Western Siberia. Studies of the isotopic composition of snow precipitation and snow cover, as well as experiments with them, were carried out during two cold seasons of 2019–2021, and laser spectroscopy PICARRO L2130-i (WS-CRDS) was used for the determination of water isotope composition (δ18O and δD). The main changes in the isotopic composition of the snow cover layers in the studied region are associated with the existence of a vertical temperature gradient between the layers and with the penetration of soil moisture into the bottom layers in the absence of soil freezing. During the winter period, the sublimation from the top layer of snow is observed only at the moments of a sharp increase in the daily air temperature. At the end of winter, the contrast between day and night air temperatures determines the direction of the shift in the isotopic composition of the top layer of snow relative to the initial snow precipitation.


2022 ◽  
Author(s):  
Lenneke M. Jong ◽  
Christopher T. Plummer ◽  
Jason L. Roberts ◽  
Andrew D. Moy ◽  
Mark A. J. Curran ◽  
...  

Abstract. Ice core records from Law Dome in East Antarctica, collected over the the last three decades, provide high resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific Oceans. Here we present a set of annually dated records of trace chemistry, stable water isotopes and snow accumulation from Law Dome covering over the period from −11 to 2017 CE (1961 to −66 BP 1950), as well as the level 1 chemistry data from which the annual chemistry records are derived. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating. The data are available for download from the Australian Antarctic Data Centre at https://doi.org/10.26179/5zm0-v192.


2022 ◽  
Vol 302 ◽  
pp. 114107
Author(s):  
Elisangela Heiderscheidt ◽  
Axumawit Tesfamariam ◽  
Hannu Marttila ◽  
Heini Postila ◽  
Stefano Zilio ◽  
...  

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Igor Karlović ◽  
Tamara Marković ◽  
Tatjana Vujnović

Exploring the interaction between precipitation, surface water, and groundwater has been a key subject of many studies dealing with water quality management. The Varaždin aquifer is an example of an area where high nitrate content in groundwater raised public concern, so it is important to understand the aquifer recharge for proper management and preservation of groundwater quality. The NW part of the Varaždin aquifer has been selected for study area, as precipitation, Drava River, accumulation lake, and groundwater interact in this area. In this study, groundwater and surface water levels, water temperature, water isotopes (2H and 18O), and chloride (Cl−) were monitored in precipitation, surface water, and groundwater during the four-year period to estimate groundwater recharge. Head contour maps were constructed based on the groundwater and surface water levels. The results show that aquifer is recharged from both Drava River and accumulation lake for all hydrological conditions–low, mean, and high groundwater levels. The monitoring results of water temperature, chloride content, and stable water isotopes were used as tracers, i.e. as an input to the mixing model for estimation of the contribution ratio from each recharge source. The calculation of mixing proportions showed that surface water is a key mechanism of groundwater recharge in the study area, with a contribution ratio ranging from 55% to 100% depending on the proximity of the observation well to surface water.


Rural communities often rely on groundwater for potable water supply. In this study, untreated groundwater samples from 28 shallow groundwater wells in Finland (&#x003C;10 m deep and mostly supplying untreated groundwater to &#x003C;200 users in rural areas) were assessed for physicochemical water quality, stable water isotopes, microbial water quality indicators, host-specific microbial source tracking (MST) markers, and bacterial community composition, activity, and diversity (using amplicon sequencing of the 16S rRNA gene and 16S rRNA). Indications of surface water intrusion were identified in five wells, and these indications were found to be negatively correlated, overall, with bacterial alpha diversity (based on amplicon sequencing of the 16S rRNA gene). High levels of turbidity, heterotrophs, and iron compromised water quality in two wells, with values up to 2.98 nephelometric turbidity units (NTU), 16,000 CFU/ml, and 2,300&#x2009;&#x03BC;g/liter, respectively. Coliform bacteria and general fecal indicator <italic>Bacteroidales</italic> bacteria (GenBac3) were detected in 14 and 10 wells, respectively (albeit mostly at low levels), and correlations were identified between microbial, physicochemical, and environmental parameters, which may indicate impacts from nearby land use (e.g., agriculture, surface water, road salt used for deicing). Our results show that although water quality was generally adequate in most of the studied wells, the continued safe use of these wells should not be taken for granted.</p> <p><bold>IMPORTANCE</bold> Standard physicochemical water quality analyses and microbial indicator analyses leave much of the (largely uncultured) complexity of groundwater microbial communities unexplored. This study combined these standard methods with additional analyses of stable water isotopes, bacterial community data, and environmental data about the surrounding areas to investigate the associations between physicochemical and microbial properties of 28 shallow groundwater wells in Finland. We detected impaired groundwater quality in some wells, identified potential land use impacts, and revealed indications of surface water intrusion which were negatively correlated with bacterial alpha diversity. The potential influence of surface water intrusion on groundwater wells and their bacterial communities is of particular interest and warrants further investigation because surface water intrusion has previously been linked to groundwater contamination, which is the primary cause of waterborne outbreaks in the Nordic region and one of the major causes in the United States and Canada. IMPORTANCE Standard physicochemical water quality analyses and microbial indicator analyses leave much of the (largely uncultured) complexity of groundwater microbial communities unexplored. This study combined these standard methods with additional analyses of stable water isotopes, bacterial community data, and environmental data about the surrounding areas to investigate the associations between physicochemical and microbial properties of 28 shallow groundwater wells in Finland. We detected impaired groundwater quality in some wells, identified potential land use impacts, and revealed indications of surface water intrusion which were negatively correlated with bacterial alpha diversity. The potential influence of surface water intrusion on groundwater wells and their bacterial communities is of particular interest and warrants further investigation because surface water intrusion has previously been linked to groundwater contamination, which is the primary cause of waterborne outbreaks in the Nordic region and one of the major causes in the United States and Canada.


2021 ◽  
Author(s):  
Alexander Sternagel ◽  
Ralf Loritz ◽  
Brian Berkowitz ◽  
Erwin Zehe

Abstract. A recent experiment of Bowers et al. (2020) revealed that diffusive mixing of water isotopes (δ2H, δ18O) over a fully saturated soil sample of a few centimetres in length required several days to equilibrate completely. In this study, we present an approach to simulate such time-delayed diffusive mixing processes on the pore scale beyond instantaneously and perfectly mixed conditions. The diffusive pore mixing (DIPMI) approach is based on a Lagrangian perspective on water particles moving by diffusion over the pore space of a soil volume and carrying concentrations of solutes or isotopes. The idea of DIPMI is to account for the self-diffusion of water particles across a characteristic length scale of the pore space using pore-size-dependent diffusion coefficients. The model parameters can be derived from the soil-specific water retention curve and no further calibration is needed. We test our DIPMI approach by simulating diffusive mixing of water isotopes over the pore space of a saturated soil volume using the experimental data of Bowers et al. (2020). Simulation results show the feasibility of the DIPMI approach to reproduce measured mixing times and concentrations of isotopes at different tensions over the pore space. This result corroborates the finding that diffusive mixing in soils depends on the pore size distribution and the specific soil water retention properties. Additionally, we perform a virtual experiment with the DIPMI approach by simulating mixing and leaching processes of a solute in a vertical, saturated soil column and comparing results against simulations with the common perfect-mixing assumption. Results of this virtual experiment reveal that the frequently observed steep rise and long tailing of breakthrough curves, which are typically associated with non-uniform transport in heterogeneous soils, may also occur in homogeneous media as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.


2021 ◽  
Vol 603 ◽  
pp. 127011
Author(s):  
Mingyi Wen ◽  
Yanwei Lu ◽  
Min Li ◽  
Dong He ◽  
Wei Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document