scholarly journals Reconciling North Atlantic climate modes: Revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century

2018 ◽  
Author(s):  
Laia Comas-Bru ◽  
Armand Hernández

Abstract. Climate variability in the North Atlantic sector is commonly ascribed to the North Atlantic Oscillation. However, recent studies have shown that taking into account the second and third mode of variability (namely the East Atlantic – EA – and the Scandinavian – SCA – patterns) greatly improves our understanding of their controlling mechanisms, as well as their impact on climate. The most commonly used EA and SCA indices span the period from 1950 to present which is too short, for example, to calibrate palaeoclimate records or assess their variability over multi-decadal scales. To tackle this, here, we create new EOF-based monthly EA and SCA indices covering the period from 1851 to present; and compare them with their equivalent instrumental indices. We also review and discuss the value of these new records and provide insights into the reasons why different sources of data may give slightly different time-series. Furthermore, we demonstrate that using these patterns to explain climate variability beyond the winter season needs to be done carefully due to their non-stationary behaviour. The datasets are available at https://doi.pangaea.de/10.1594/PANGAEA.892769.

2018 ◽  
Vol 10 (4) ◽  
pp. 2329-2344 ◽  
Author(s):  
Laia Comas-Bru ◽  
Armand Hernández

Abstract. Climate variability in the North Atlantic sector is commonly ascribed to the North Atlantic Oscillation. However, recent studies have shown that taking into account the second and third mode of variability (namely the East Atlantic – EA – and the Scandinavian – SCA – patterns) greatly improves our understanding of their controlling mechanisms, as well as their impact on climate. The most commonly used EA and SCA indices span the period from 1950 to present, which is too short, for example, to calibrate palaeoclimate records or assess their variability over multi-decadal scales. To tackle this, here, we create new EOF-based (empirical orthogonal function) monthly EA and SCA indices covering the period from 1851 to present, and compare them with their equivalent instrumental indices. We also review and discuss the value of these new records and provide insights into the reasons why different sources of data may give slightly different time series. Furthermore, we demonstrate that using these patterns to explain climate variability beyond the winter season needs to be done carefully due to their non-stationary behaviour. The datasets are available at https://doi.org/10.1594/PANGAEA.892769.


Author(s):  
Courtney Quinn ◽  
Dylan Harries ◽  
Terence J. O’Kane

AbstractThe dynamics of the North Atlantic Oscillation (NAO) are analyzed through a data-driven model obtained from atmospheric reanalysis data. We apply a regularized vector autoregressive clustering technique to identify recurrent and persistent states of atmospheric circulation patterns in the North Atlantic sector (110°W-0°E, 20°N-90°N). In order to analyze the dynamics associated with the resulting cluster-based models, we define a time-dependent linear delayed map with a switching sequence set a priori by the cluster affiliations at each time step. Using a method for computing the covariant Lyapunov vectors (CLVs) over various time windows, we produce sets of mixed singular vectors (for short windows) and approximate the asymptotic CLVs (for longer windows). The growth rates and alignment of the resulting time-dependent vectors are then analyzed. We find that the window chosen to compute the vectors acts as a filter on the dynamics. For short windows, the alignment and changes in growth rates are indicative of individual transitions between persistent states. For long windows, we observe an emergent annual signal manifest in the alignment of the CLVs characteristic of the observed seasonality in the NAO index. Analysis of the average finite-time dimension reveals the NAO− as the most unstable state relative to the NAO+, with persistent AR states largely stable. Our results agree with other recent theoretical and empirical studies that have shown blocking events to have less predictability than periods of enhanced zonal flow.


2010 ◽  
Vol 10 (7) ◽  
pp. 1379-1391 ◽  
Author(s):  
K. M. Nissen ◽  
G. C. Leckebusch ◽  
J. G. Pinto ◽  
D. Renggli ◽  
S. Ulbrich ◽  
...  

Abstract. A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.


2021 ◽  
Author(s):  
Veronika N. Maslova ◽  
Elena N. Voskresenskaya ◽  
Alexander V. Yurovsky ◽  
Mikhail Yu. Bardin

Abstract To study regimes of winter cyclones in the North Atlantic, empirical orthogonal function decomposition was applied separately to the frequency, depth and area of cyclones obtained using 6-hourly NCEP/NCAR reanalysis data in 1952–2017 and the developed methodology. The first mode represented the opposite changes of cyclone anomalies in the northern and southern/central North Atlantic. The second mode was characterized by the greatest regional anomalies between its phases over Europe, off its coast and over the Mediterranean. The greatest changes of anomalies for the third modes were in temperate latitudes, both over the ocean and Europe. Linear trends were significant only for the first modes of cyclone parameters. The largest part of variability (74–90% of dispersion) of all cyclone modes corresponded to the periods up to 15 years and was used for spectral analysis, which identified significant spectral peaks: 2.5–3, 4.5, 6 and 8.5 years. These periods coincided with spectral peaks of the main interannual climate signals. Regression analysis allowed to identify the sets of teleconnection patterns responsible jointly for 60–85% of dispersion of the first cyclone modes. The North Atlantic Oscillation and Arctic Oscillation were the main patterns for the first modes of the cyclone parameters. For the second and third frequency modes, the East Atlantic (EA) pattern and a combination of the East Atlantic/West Russia (EA/WR) and Scandinavia patterns played the major role, respectively. As for the third depth and area modes, the association with the EA and EA/WR patterns was shown, respectively.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1533
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

Atmospheric-oceanic circulations (teleconnections) have an important influence on regional climate. In Great Britain, the North Atlantic Oscillation (NAO) has long been understood as the leading mode of climate variability, and its phase and magnitude have been found to influence regional rainfall in previous research. The East Atlantic Pattern (EA) is also increasingly recognised as being a secondary influence on European climate. In this study we use high resolution gridded rainfall and Standardised Precipitation Index (SPI) time series data for Great Britain to map the monthly rainfall signatures of the NAO and EA over the period January 1950–December 2015. Our analyses show that the influence of the two teleconnections varies in space and time with distinctive monthly signatures observed in both average rainfall/SPI-1 values and incidences of wet/dry extremes. In the winter months the NAO has a strong influence on rainfall and extremes in the north-western regions. Meanwhile, in the southern and central regions stronger EA-rainfall relationships are present. In the summer months opposing positive/negative phases of the NAO and EA result in stronger wet/dry signatures which are more spatially consistent. Our findings suggest that both the NAO and EA have a prominent influence on regional rainfall distribution and volume in Great Britain, which in turn has implications for the use of teleconnection forecasts in water management Decemberision making. We conclude that accounting for both NAO and EA influences will lead to an enhanced understanding of both historic and future spatial distribution of monthly precipitation.


2015 ◽  
Vol 72 (3) ◽  
pp. 1152-1173 ◽  
Author(s):  
Dehai Luo ◽  
Yao Yao ◽  
Aiguo Dai

Abstract Both the positive and negative phases of the North Atlantic Oscillation (NAO+ and NAO−, respectively) and atmospheric blocking in the Euro-Atlantic sector reflect synoptic variability over the region and thus are intrinsically linked. This study examines their relationship from a decadal change perspective. Since the winter-mean NAO index is defined as a time average of instantaneous NAO indices over the whole winter, it is unclear how the activity of European blocking (EB) events can be related to the variation of the positive mean NAO index. Here, this question is examined by dividing the winter period 1978–2011 into two decadal epochs: 1978–94 (P1) with an increasing and high NAO index and 1995–2011 (P2) with a decreasing and low NAO index. Using atmospheric reanalysis data, it is shown that there are more intense and persistent EB events in eastern Europe during P1 than during P2, while the opposite is true for western Europe. It is further shown that there are more NAO+ (NAO−) events during P1 (P2). The EB events associated with NAO+ events extend more eastward and are associated with stronger Atlantic mean zonal wind and weaker western Atlantic storm track during P1 than during P2, but EB events associated with NAO− events increase in western Europe under opposite Atlantic conditions during P2. Thus, the increase in the number of individual NAO+ (NAO−) events results in more EB events in eastern (western) Europe during P1 (P2). The EB change is also associated with the increased frequency of NAO− to NAO+ (NAO+ to NAO−) transition events.


Sign in / Sign up

Export Citation Format

Share Document