scholarly journals Blieschow on Jasmund – geomorphology and glacigenic landforms: keys to understanding the deformation chronology of Jasmund

2019 ◽  
Vol 2 ◽  
pp. 11-17 ◽  
Author(s):  
Anna Gehrmann ◽  
Chris Harding

Abstract. The late Weichselian glacitectonic framework of the Jasmund peninsula forms surface expressions of subparallel ridges and elongated valleys in between. Geomorphological mapping and landform analyses based on lidar-derived digital elevation models (DEMs) give rise to a revised genetic model for Jasmund, including three evolutional stages that are characterised by different ice flow patterns.

2020 ◽  
Vol 12 (4) ◽  
pp. 630
Author(s):  
Maciej Dąbski ◽  
Anna Zmarz ◽  
Mirosław Rodzewicz ◽  
Małgorzata Korczak-Abshire ◽  
Izabela Karsznia ◽  
...  

The aim of this article is to show geomorphological mapping of remote Antarctic locations using images taken by a fixed-wing unmanned aerial vehicle (UAV) during the Beyond Visual Line of Sight (BVLOS) operations. We mapped landform assemblages developed in forelands of Ecology Glacier (EGF), Sphinx Glacier (SGF) and Baranowski Glacier (BGF) in Antarctic Specially Protected Area No. 128 (ASPA 128) on King George Island (South Shetland Islands) and inferred about glacial dynamics. The orthophoto and digital elevation model allowed for geomorphological mapping of glacial forelands, including (i) glacial depositional landforms, (ii) fluvial and fluvioglacial landforms, (iii) littoral and lacustrine landforms, (iv) bodies of water, and (v) other. The largest area is occupied by ground moraine and glacial lagoons on EGF and BGF. The most profound features of EGF are the large latero-frontal moraine ridges from Little Ice Age and the first half of the 20th century. Large areas of ground moraine, frequently fluted and marked with large recessional moraine ridges, dominate on SGF. A significant percentage of bedrock outcrops and end moraine complexes characterize BGF. The landform assemblages are typical for discontinuous fast ice flow of tidewater glaciers over a deformable bed. It is inferred that ice flow velocity decreased as a result of recession from the sea coast, resulting in a significant decrease in the length of ice cliffs and decrease in calving rate. Image acquisition during the fixed-wing UAV BVLOS operation proved to be a very robust technique in harsh polar conditions of King George Island.


Geomorphology ◽  
2016 ◽  
Vol 273 ◽  
pp. 134-149 ◽  
Author(s):  
Gianluca Norini ◽  
Maria Clara Zuluaga ◽  
Iris Jill Ortiz ◽  
Dakila T. Aquino ◽  
Alfredo Mahar F. Lagmay

2020 ◽  
Vol 92 (2) ◽  
pp. 77-98
Author(s):  
Annika Katarina Åberg ◽  
◽  
Seija Kultti ◽  
Anu Kaakinen ◽  
Kari O. Eskola ◽  
...  

Three different till units separated by interstadial fluvial deposits were observed in the Sodankylä area in the River Kitinen valley, northern Finland. The interbedded glaciofluvial sediments and palaeosol were dated by OSL to the Early (79±12 to 67±13 ka) and Middle (41±9 ka) Weichselian. A LiDAR DEM, glacial lineations, the flow direction of till fabrics, esker chains and striations were applied to investigate the glacial flow patterns of the Sodankylä, Kittilä and Salla areas. The analysis revealed that the youngest movement of the Scandinavian Ice Sheet is not visible as DEM lineations within the studied areas. The modern morphology in Kittilä and Salla shows streamlined landforms of various dimensions mainly oriented from the NW and NNW, respectively, corresponding to the Early/Middle Weichselian ice-flow directions inferred from till fabrics. The Late Weichselian ice flow has produced an insignificant imprint on the landforms. This study suggests a northern location for the ice-divide zone during the Early/Middle Weichselian, and a more western–southwestern position during the Late Weichselian. The OSL ages of 14±3.3 ka from the aeolian deposits may indicate ice-free areas during the Bølling–Allerod warm period in the vicinity of the River Kitinen.


Author(s):  
K. Saha ◽  
K. J. J. Van Landeghem

Abstract. In the field of geomorphological mapping, the demand for automated delineation of bedforms is growing due to the increasing availability of Digital Elevation Models (DEMs) in small to medium resolutions. This automated technique is not commonly applied in submarine DEMs, where bedform morphology is often subdued due to erosion and part-burial. Here we analyse drumlins in both terrestrial and submarine environments to compare and contrast the set of rules needed for their automated delineation from 3D topographic data. An existing set of rules for automated extraction to delineate the perimeter of terrestrial drumlins was developed in 2011 using object-oriented classification tools, available through eCognition Developer (V.8.7.2). This partly supervised method is evaluated here and subsequently adjusted to be applied to extract drumlins from a submarine DEM with a higher resolution. Several adjustments were needed due to the morphologic differences between the terrestrial and the submarine drumlins. For submarine drumlins, a focus on variation in elevation in the tool is needed, as part-burial and overprinting by other bedforms is common in submarine settings. A Canny Edge Detector filter was used instead of the Sobel Edge detection filter, whilst slope gradient and direction played a larger role in the set of rules. Visual and quantitative comparison with manually delineated drumlin perimeters confirms the success of this revised automated extraction method in both terrestrial and submarine environments. The flexibility and precision of this method thus allow for the future development of object-oriented classification tools to delineate a wide range of bedforms from large-scale DEMs collected from all environments.


10.1596/34445 ◽  
2020 ◽  
Author(s):  
Louise Croneborg ◽  
Keiko Saito ◽  
Michel Matera ◽  
Don McKeown ◽  
Jan van Aardt

Sign in / Sign up

Export Citation Format

Share Document