The effect of a strongly stratified layer in the upper part of Mercury’s core on its magnetic field

Author(s):  
Patrick Kolhey ◽  
Daniel Heyner ◽  
Johannes Wicht ◽  
Karl-Heinz Glassmeier

<p>In the 1970’s the flybys of NASA’s Mariner 10 spacecraft confirmed the existence of an internally generated magnetic field at Mercury. The measurements taken during its flybys already revealed, that Mercury‘s magnetic field is unique along other planetary magnetic fields, since the magnetic dipole moment of ~190 nT ∙ R<sub>M</sub><sup>3 </sup>is very weak, e.g. compared to Earth’s magnetic dipole moment. The following MESSENGER mission from NASA investigated Mercury and its magnetic field more precisely and exposed additional interesting properties about the planet’s magnetic field. The tilt of its dipole component is less than 1°, which indicates a strong alignment of the field along the planet’s rotation axis. Additionally the measurement showed that the magnetic field equator is shifted roughly 0.2 ∙ R<sub>M</sub> towards north compared to Mercury‘s actual geographic equator.</p><p>Since its discovery Mercury‘s magnetic field has puzzled the community and modelling the dynamo process inside the planet’s interior is still a challenging task. Adapting the typical control parameters and the geometry in the models of the geodynamo for Mercury does not lead to the observed field morphology and strength. Therefore new non-Earth-like models were developed over the past decades trying to match Mercury’s peculiar magnetic field. One promising model suggests a stably stratified layer on the upper part of Mercury’s core. Such a layer divides the fluid core in a convecting part and a non-convecting part, where the magnetic field generation is mainly inhibited. As a consequence the magnetic field inside the outer core is damped very efficiently passing through the stably stratified layer by a so-called skin effect. Additionally, the non-axisymmetric parts of the magnetic field are vanishing, too, such that a dipole dominated magnetic is left at the planet’s surface.</p><p>In this study we present new direct numerical simulations of the magnetohydrodynamical dynamo problem which include a stably stratified layer on top of the outer core. We explore a wide parameter range, varying mainly the Rayleigh and Ekman number in the model under the aspect of a strong stratification of the stable layer. We show which conditions are necessary to produce a Mercury-like magnetic field and give a inside about the planets interior structure.</p>

2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


2020 ◽  
Author(s):  
Alberto Molina Cardín ◽  
Luis Dinis Vizcaíno ◽  
María Luisa Osete López

<p>The magnetic field of the Earth is generated in its core by the process called the geodynamo, which involves convection in the fluid and electrical conducting outer core. The evolution of this complex process is simulated by magnetohydrodynamic models, which provide the state of the core and the magnetic field at any point and any time of the simulation. Nevertheless, the complexity of these models implies a high computational cost. That is why conceptual simple models describing only the main mechanisms from a statistical perspective can also be useful.</p><p>In this work we present a conceptual model that reproduces the main features of the axial dipole moment (ADM) of the Earth magnetic field. It is based on the stochastic dynamics of two Brownian particles interacting with each other within a double-well potential. The obtained simulations are able to mimic the random temporal distribution of reversals and excursions and the asymmetric temporal evolution of ADM during reversals. The relation between the model features and the real mechanisms that lead to the observed behaviour is discussed.</p>


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Danielle R. Yahne ◽  
Liurukara D. Sanjeewa ◽  
Athena S. Sefat ◽  
Bradley S. Stadelman ◽  
Joseph W. Kolis ◽  
...  

1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


Sign in / Sign up

Export Citation Format

Share Document