spin axis
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Wenjin Zhao ◽  
Elliott Runburg ◽  
Zaiyao Fei ◽  
Joshua Mutch ◽  
Paul Malinowski ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1513
Author(s):  
Ekkehard Krüger

The paper reports evidence that the multi-spin-axis magnetic structure proposed in 1964 by van Laar is realized in antiferromagnetic CoO. This tetragonal spin arrangement produces both the strong tetragonal and the weaker monoclinic distortion experimentally observed in this material. The monoclinic distortion is proposed to be a “monoclinic-like” distortion of the array of the oxygen atoms, comparable with the rhombohedral-like distortion of the oxygen atoms recently proposed to be present in NiO and MnO. The monoclinic-like distortion has no influence on the tetragonal magnetic structure, which is generated by a special nonadiabatic atomic-like motion of the electrons near the Fermi level. It is argued that it is this atomic-like motion that qualifies CoO to be a Mott insulator.


2021 ◽  
Vol 162 (3) ◽  
pp. 89
Author(s):  
Jingwen Zhang ◽  
Lauren M. Weiss ◽  
Daniel Huber ◽  
Sarah Blunt ◽  
Ashley Chontos ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ross N. Mitchell ◽  
Christopher J. Thissen ◽  
David A. D. Evans ◽  
Sarah P. Slotznick ◽  
Rodolfo Coccioni ◽  
...  

AbstractTrue polar wander (TPW), or planetary reorientation, is well documented for other planets and moons and for Earth at present day with satellites, but testing its prevalence in Earth’s past is complicated by simultaneous motions due to plate tectonics. Debate has surrounded the existence of Late Cretaceous TPW ca. 84 million years ago (Ma). Classic palaeomagnetic data from the Scaglia Rossa limestone of Italy are the primary argument against the existence of ca. 84 Ma TPW. Here we present a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy that provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years.


2021 ◽  
Author(s):  
Daniel Woodworth ◽  
Richard Gordon ◽  
Kevin Gaastra

<p>Skewness analysis of marine magnetic anomalies is the most misunderstood methodology in paleomagnetism. Such analysis has several advantages. First, marine magnetic anomalies innately average secular variation. Second, paleomagnetic poles determined by analysis of their skewness are not biased by overprints. Third, skewness analysis can determine high precision paleomagnetic poles. Specifically, skewness analysis of magnetic anomalies recording Late Cretaceous and early to mid-Cenozoic seafloor spreading between the Pacific and Farallon plates, because of their geometry with respect to the paleo-spin axis, results in high-precision paleomagnetic poles. These anomalies in many cases span ~140° of effective remanent inclination over a span of ~40° of latitude, reducing uncertainty by a factor of ~0.3 when mapping from direction space to pole space (Zheng et al. 2018).</p><p>Paleomagnetic poles have been previously determined from skewness analysis for six Pacific plate anomalies: C32n (74-71 Ma), C31n-C27r (60-63 Ma), C26r (62-59 Ma), C25r (59-58 Ma), C24r (57-54 Ma), C20r (46-43 Ma), and C12r (33-31 Ma). The younger group, C20r and C12r, together with independent paleo-spin axis estimates from the paleo-distribution of sediment accumulation rates from 12-46 Ma, define an approximately stationary paleo-spin axis location relative to the Pacific hotspots but offset from the current spin axis by 3°. The older group, 74-54 Ma, also shows that the Pacific hotspots remained approximately stationary relative to an additional paleo-spin axis location separated by 8° from the 12-46-Ma paleo-spin axis, implying an episode of reorientation of the entire solid earth – i.e., true polar wander (TPW) – of ~8° over at most 8 Ma between 54 and 46 Ma, or a rate of TPW of ~1°/Ma or more.</p><p>To constrain the timing and rate of reorientation, we analyze anomaly C21n (47-46 Ma), the youngest anomaly inside the 54-46-Ma interval. We incorporate 33 total-intensity ship- and 11 vector aero-magnetic track lines and find a well-constrained paleomagnetic pole near 77N, 23E in the fixed-Pacific plate reference frame.</p><p>Our new paleomagnetic pole is consistent with a prior, more uncertain, 48-Ma paleo-spin axis location from the paleo-distribution of sediment accumulation rates. When reconstructed into the Pacific hotspot reference frame, our new paleomagnetic pole lies close to the younger 46 to 12-Ma TPW stillstand location, indicating that true polar wander was completed by 47 Ma, if not earlier. Thus the ~8° shift occurred in, at most, 6.0 Ma at a rate of at least ~1.3°/Ma, and potentially even faster. The lower bound of ~1.3°/Ma of TPW indicate that Early Eocene TPW is comparable to the rate of present-day TPW (~1.1°/Ma extrapolated from geodetic data (Argus and Gross, 2004)). This new pole bounds the Early Eocene TPW episode between approximately the old and young ends of the Early Eocene Climatic Optimum (EECO; 53.2-49.1 Ma (Westerhold et al. 2018)). Thus, there may be a link between Early Eocene TPW and important climate events, such as the frequency of hyperthermals and the onset of Eocene cooling. In addition, TPW was likely complete before the 47.4-Ma age of the bends in Pacific plate hotspot chains (Gaastra & Gordon, this meeting).</p>


2021 ◽  
Vol 502 (2) ◽  
pp. 2893-2911 ◽  
Author(s):  
Vedad Kunovac Hodžić ◽  
Amaury H M J Triaud ◽  
Heather M Cegla ◽  
William J Chaplin ◽  
Guy R Davies

ABSTRACT Planet–planet scattering events can leave an observable trace of a planet’s migration history in the form of orbital misalignment with respect to the stellar spin axis, which is measurable from spectroscopic time-series taken during transit. We present high-resolution spectroscopic transits observed with ESPRESSO of the close-in super-Earth π Men c. The system also contains an outer giant planet on a wide, eccentric orbit, recently found to be inclined with respect to the inner planetary orbit. These characteristics are reminiscent of past dynamical interactions. We successfully retrieve the planet-occulted light during transit, and find evidence that the orbit of π Men c is moderately misaligned with the stellar spin axis with λ = − 24${_{.}^{\circ}}$0 ± 4${_{.}^{\circ}}$1 ($\psi = {26{_{.}^{\circ}} 9}^{+5{_{.}^{\circ}}8 }_{-4{_{.}^{\circ}}7 }$). This is consistent with the super-Earth π Men c having followed a high-eccentricity migration followed by tidal circularization, and hints that super-Earths can form at large distances from their star. We also detect clear signatures of solar-like oscillations within our ESPRESSO radial velocity time series, where we reach a radial velocity precision of ∼20 cm s−1. We model the oscillations using Gaussian processes (GPs) and retrieve a frequency of maximum oscillation, $\nu _\mathrm{max}{} = 2771^{+65}_{-60}\, \mu \mathrm{Hz}$. These oscillations make it challenging to detect the Rossiter–McLaughlin effect using traditional methods. We are, however, successful using the reloaded Rossiter–McLaughlin approach. Finally, in the appendix, we also present physical parameters and ephemerides for π Men c from a GP transit analysis of the full Transiting Exoplanet Survey Satellite Cycle 1 data.


2020 ◽  
Vol 643 ◽  
pp. A18
Author(s):  
C. de la Fuente Marcos ◽  
R. de la Fuente Marcos

Context. The orientation of the spin axis of a comet is defined by the values of its equatorial obliquity and its cometocentric longitude of the Sun at perihelion. These parameters can be computed from the components of the nongravitational force caused by outgassing if the cometary activity is well characterized. The trajectories of known interstellar bodies passing through the Solar System show nongravitational accelerations. Aims. The spin-axis orientation of 1I/2017 U1 (‘Oumuamua) remains to be determined; for 2I/Borisov, the already released results are mutually exclusive. In both cases, the values of the components of the nongravitational force are relatively well constrained. Here, we investigate – within the framework of the forced precession model of a nonspherical cometary nucleus – the orientation of the spin axes of ‘Oumuamua and 2I/Borisov using public orbit determinations that consider outgassing. Methods. We applied a Monte Carlo simulation using the covariance matrix method together with Monte Carlo random search techniques to compute the distributions of equatorial obliquities and cometocentric longitudes of the Sun at perihelion of ‘Oumuamua and 2I/Borisov from the values of the nongravitational parameters. Results. We find that the equatorial obliquity of ‘Oumuamua could be about 93°, if it has a very prolate (fusiform) shape, or close to 16°, if it is very oblate (disk-like). Different orbit determinations of 2I/Borisov gave obliquity values of 59° and 90°. The distributions of cometocentric longitudes were in general multimodal. Conclusions. Our calculations suggest that the most probable spin-axis direction of ‘Oumuamua in equatorial coordinates is (280°, +46°) if very prolate or (312°, −50°) if very oblate. Our analysis favors a prolate shape. For the orbit determinations of 2I/Borisov used here, we find most probable poles pointing near (275°, +65°) and (231°, +30°), respectively. Although our analysis favors an oblate shape for 2I/Borisov, a prolate one cannot be ruled out.


Author(s):  
Andrew W Smith ◽  
Barton L Smith

An experimental investigation of how seams and their orientation relative to the spin axis and flight direction can alter the formation of a wake around a baseball was conducted. Particle Image Velocimetry (PIV) was used to examine the velocity field around a baseball in specific orientations and to find the boundary layer separation location, which is the location on the baseball where the wake begins to form. Certain orientations can advance the separation point on one side of the baseball, generating a pressure force on the baseball and modifying its flight path. Using this information as a guide, baseballs were launched 55 feet (a realistic pitching distance) in orientations designed to have an asymmetric separation point. These pitches were 90 mph at spin rates near 1200RPM with a vertical spin axis perpendicular to the initial flight direction. A Rapsodo 1.0 system was used to compare the pitch locations for different seam orientations. The results of this study showed a significant and repeatable difference in the path of the baseball depending on the orientation of the seams relative to the spin axis. This effect was more significant for baseballs with larger seams.


2020 ◽  
Author(s):  
Josef Hanus ◽  
Ondrej Pejcha ◽  
Ben Shappee

<p>The All-Sky Automated Survey for Supernovae (ASAS-SN) currently<br />operates 24 small-aperture telescopes distributed around the globe to<br />automatically survey the entire visible sky every night down to about<br />g~18 mag. Between 2013 and 2018, the survey used a V filter with<br />limiting magnitude V~17. Although primarily hunting for supernovae and<br />other transients, asteroids are common intruders in the ASAS-SN's<br />images. Here we present efforts to analyze the sparsely sampled V-band<br />photometry extracted from the ASAS-SN images for >10,000 asteroids<br />that get brighter than V~17 mag. The data span years 2013-2018 and<br />sample up to 7 consequent apparitions for each asteroid. We provide<span class="im"><br />details about the photometry extraction and calibration, photometry<br />accuracy, and various statistics such as the typical number of data<br />points per asteroid as a function of the brightness. Finally, we<br /></span> analyze the photometric data with the lightcurve inversion method and<br />derive rotation periods, spin axis directions, and shapes for a sample<span class="im"><br />of studied asteroids. We discuss the typical amount of data sufficient<br />for a successful shape model determination. We compare derived<br />physical properties with those available in the literature to<br /></span> illustrate the reliability of the ASAS-SN photometry.</p>


Sign in / Sign up

Export Citation Format

Share Document